タグ「曲線」の検索結果

22ページ目:全1320問中211問~220問を表示)
静岡大学 国立 静岡大学 2015年 第1問
関数$f(x)=x^3-9x^2+24x$について,次の問いに答えよ.

(1)$f(x)$の増減,極値を調べて,グラフの概形をかけ.
(2)$k$を定数とするとき,曲線$y=f(x)$と直線$y=kx$の共有点の個数を調べよ.
(3)曲線$y=f(x)$と直線$y=6x$で囲まれた図形の面積$S$を求めよ.
静岡大学 国立 静岡大学 2015年 第3問
関数$f(x)=x^3-9x^2+24x$について,次の問いに答えよ.

(1)$f(x)$の増減,極値を調べて,グラフの概形をかけ.
(2)$k$を定数とするとき,曲線$y=f(x)$と直線$y=kx$の共有点の個数を調べよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第3問
次の$\tocichi$,$\tocni$に答えよ.

\mon[$\tocichi$] 次の$5$つの定積分を求めよ.($\tocni \ (4)$で用いる.)

$\displaystyle I_1=\int_0^\pi x \sin x \, dx,\quad I_2=\int_0^\pi x^2 \cos x \, dx,\quad I_3=\int_0^\pi \sin^2 x \, dx$

$\displaystyle I_4=\int_0^\pi x \cos x \sin x \, dx,\quad I_5=\int_0^\pi \sin^2 x \cos x \, dx$

\mon[$\tocni$] 関数$y=\sin x$のグラフを曲線$C$とする.$C$上の点$\mathrm{O}(0,\ 0)$における接線を$\ell_1$,点$\mathrm{A}(\pi,\ 0)$における接線を$\ell_2$とする.
$\ell_1$と$\ell_2$の交点を$\mathrm{B}$,$C$上の点$\mathrm{P}(t,\ \sin t) (0 \leqq t \leqq \pi)$から$\ell_1$に下ろした垂線を$\mathrm{PQ}$とする.ただし,$t=0$のときは$\mathrm{Q}=\mathrm{P}$とする.$\mathrm{OQ}=s$とおく.

\mon[$(1)$] $\angle \mathrm{OBA}$の大きさを求めよ.
\mon[$(2)$] $s$を$t$を用いて表せ.
\mon[$(3)$] 線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
\mon[$(4)$] 曲線$C$と$2$直線$\ell_1$,$\ell_2$で囲まれた部分を,直線$\ell_1$の周りに$1$回転させてできる立体の体積$V$を求めよ.
熊本大学 国立 熊本大学 2015年 第1問
$a$を実数とする.曲線$C_1:y=x^2$上の点$(a,\ a^2)$における接線を$\ell$とする.曲線$C_2$を$y=x^2-1$とする.以下の問いに答えよ.

(1)$\ell$と$C_2$とで囲まれた部分の面積を求めよ.
(2)$\displaystyle a=\frac{1}{\sqrt{2}}$とする.曲線$C_3:y=-x^2+1$と$C_2$とで囲まれた部分は$\ell$によって$2$つの部分に分けられる.これらのうち,点$\displaystyle \left( 0,\ \frac{1}{2} \right)$を含む部分の面積を求めよ.
琉球大学 国立 琉球大学 2015年 第4問
$t$を媒介変数として,$\displaystyle x=t+\frac{1}{t}+\frac{5}{2}$,$\displaystyle y=2t-\frac{2}{t}$で表される曲線を考える.次の問いに答えよ.

(1)$t$を消去して,$x$と$y$の関係式を求めよ.
(2)$a$を定数とするとき,直線$y=ax+5$とこの曲線との共有点の個数を調べよ.
香川大学 国立 香川大学 2015年 第4問
$b$を$b>2 \sqrt{2}$を満たす実数とする.このとき,次の問に答えよ.

(1)$f(x)=x+(e^x-b)e^x$とするとき,方程式$f(x)-a=0$が異なる$3$個の実数解をもつような実数$a$の範囲を求めよ.
(2)実数$a$が$(1)$で求めた範囲にあるとする.このとき,点$(a,\ b)$を中心とする円で,曲線$y=e^x$と異なる$4$点で交わるものが存在することを示せ.
佐賀大学 国立 佐賀大学 2015年 第2問
直線$\ell:y=ax+b$と曲線$C:y=\log x (x>0)$は接するものとする.ただし,$a,\ b$は定数であり,$a>0$とする.このとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)$\ell$と$C$および$x$軸で囲まれた図形の面積を$S$とする.$0<a<1$のとき,$S$を$a$を用いて表せ.
鳥取大学 国立 鳥取大学 2015年 第3問
$xy$平面上の第$1$象限内の$2$つの曲線$C_1:y=\sqrt{x} (x>0)$と$\displaystyle C_2:y=\frac{1}{x} (x>0)$を考える.次の問いに答えよ.ただし,$a$は正の実数とする.

(1)$x=a$における$C_1$の接線$L_1$の方程式を求めよ.
(2)$C_2$の接線$L_2$が$(1)$で求めた$L_1$と直交するとき,接線$L_2$の方程式を求めよ.
(3)$(2)$で求めた$L_2$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.折れ線$\mathrm{AOB}$の長さ$l$を$a$の関数として求め,$l$の最小値を求めよ.ここで,$\mathrm{O}$は原点である.
鳥取大学 国立 鳥取大学 2015年 第4問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において,$2$曲線$y=\cos x$,$y=\sin 2x$で囲まれた図形を$x$軸の周りに$1$回転してできる立体の体積$V$を求めたい.次の問いに答えよ.

(1)$2$曲線$y=\cos x$,$y=\sin 2x$の交点の$x$座標をすべて求めよ.ただし,$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$とする.
(2)体積$V$を求めよ.
鳥取大学 国立 鳥取大学 2015年 第3問
$xy$平面上の第$1$象限内の$2$つの曲線$C_1:y=\sqrt{x} (x>0)$と$\displaystyle C_2:y=\frac{1}{x} (x>0)$を考える.次の問いに答えよ.ただし,$a$は正の実数とする.

(1)$x=a$における$C_1$の接線$L_1$の方程式を求めよ.
(2)$C_2$の接線$L_2$が$(1)$で求めた$L_1$と直交するとき,接線$L_2$の方程式を求めよ.
(3)$(2)$で求めた$L_2$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.折れ線$\mathrm{AOB}$の長さ$l$を$a$の関数として求め,$l$の最小値を求めよ.ここで,$\mathrm{O}$は原点である.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。