タグ「曲線」の検索結果

20ページ目:全1320問中191問~200問を表示)
前橋工科大学 公立 前橋工科大学 2016年 第3問
関数$f(x)=x^2(2x^2-x-2)e^x$がある.次の問いに答えなさい.

(1)$y=f(x)$のグラフの概形をかきなさい.ただし,凹凸は調べなくてよい.また,$\displaystyle \lim_{x \to -\infty} f(x)=0$であることは断りなしに用いてもよい.
(2)$a$を定数とする.$2$つの曲線$y=2x^4-x^3-2x^2$と$y=ae^{-x}$の共有点の数が$3$個であるための$a$の条件を求めなさい.
札幌医科大学 公立 札幌医科大学 2016年 第4問
関数$f(x)=x+2 \cos x$を$0 \leqq x \leqq 2\pi$の範囲で考える.

(1)関数$y=f(x)$の極値と変曲点を求め,グラフの概形を描け.
(2)関数$y=f(x)$の二つの変曲点を通る直線を$\ell$とする.曲線$y=f(x)$と直線$\ell$とで囲まれる図形を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
東京大学 国立 東京大学 2015年 第3問
$a$を正の実数とし,$p$を正の有理数とする.座標平面上の$2$つの曲線$y=ax^p (x>0)$と$y=\log x (x>0)$を考える.この$2$つの曲線の共有点が$1$点のみであるとし,その共有点を$\mathrm{Q}$とする.以下の問いに答えよ.必要であれば,$\displaystyle \lim_{x \to \infty} \frac{x^p}{\log x}=\infty$を証明なしに用いてよい.

(1)$a$および点$\mathrm{Q}$の$x$座標を$p$を用いて表せ.
(2)この$2$つの曲線と$x$軸で囲まれる図形を,$x$軸のまわりに$1$回転してできる立体の体積を$p$を用いて表せ.
(3)$(2)$で得られる立体の体積が$2 \pi$になるときの$p$の値を求めよ.
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
北海道大学 国立 北海道大学 2015年 第1問
$a$は実数とし,$2$つの曲線
\[ C_1:y=(x-1)e^x,\quad C_2:y=\frac{1}{2e}x^2+a \]
がある.ただし,$e$は自然対数の底である.$C_1$上の点$(t,\ (t-1)e^t)$における$C_1$の接線が$C_2$に接するとする.

(1)$a$を$t$で表せ.
(2)$t$が実数全体を動くとき,$a$の極小値,およびそのときの$t$の値を求めよ.
神戸大学 国立 神戸大学 2015年 第1問
座標平面上の$2$つの曲線$\displaystyle y=\frac{x-3}{x-4}$,$\displaystyle y=\frac{1}{4}(x-1)(x-3)$をそれぞれ$C_1$,$C_2$とする.以下の問に答えよ.

(1)$2$曲線$C_1$,$C_2$の交点をすべて求めよ.
(2)$2$曲線$C_1$,$C_2$の概形をかき,$C_1$と$C_2$で囲まれた図形の面積を求めよ.
神戸大学 国立 神戸大学 2015年 第3問
$a$を正の実数とする.座標平面上の曲線$C$を
\[ y=x^4-2(a+1)x^3+3ax^2 \]
で定める.曲線$C$が$2$つの変曲点$\mathrm{P}$,$\mathrm{Q}$をもち,それらの$x$座標の差が$\sqrt{2}$であるとする.以下の問に答えよ.

(1)$a$の値を求めよ.
(2)線分$\mathrm{PQ}$の中点と$x$座標が一致するような,$C$上の点を$\mathrm{R}$とする.三角形$\mathrm{PQR}$の面積を求めよ.
(3)曲線$C$上の点$\mathrm{P}$における接線が$\mathrm{P}$以外で$C$と交わる点を$\mathrm{P}^\prime$とし,点$\mathrm{Q}$における接線が$\mathrm{Q}$以外で$C$と交わる点を$\mathrm{Q}^\prime$とする.線分$\mathrm{P}^\prime \mathrm{Q}^\prime$の中点の$x$座標を求めよ.
広島大学 国立 広島大学 2015年 第4問
$a,\ b,\ p$は$a>0$,$b>0$,$p<0$を満たす実数とする.座標平面上の$2$曲線
\[ C_1:y=e^x,\quad C_2:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \]
を考える.ただし,$e$は自然対数の底である.$C_1$と$C_2$が点$(p,\ e^p)$を共有し,その点における$C_1$の接線と$C_2$の接線が一致するとき,次の問いに答えよ.

(1)$p$を$a$を用いて表せ.
(2)$\displaystyle \lim_{a \to \infty}(p+a)$を求めよ.
(3)$\displaystyle \lim_{a \to \infty}\frac{b^2e^{2a}}{a}$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第1問
次の問いに答えよ.

(1)$x \geqq 1$のとき,不等式$2 \sqrt{x}>1+\log x$が成り立つことを証明せよ.
(2)関数$y=x \log x (x>0)$のグラフを曲線$C$とする.定数$a$に対し,曲線$C$の接線で点$(a,\ 0)$を通るものは何本あるか.
(3)$(2)$で定められた曲線$C$とその傾き$2$の接線および直線$x=e^{-2}$で囲まれた部分の面積を求めよ.
東北大学 国立 東北大学 2015年 第1問
$xy$平面において,次の式が表す曲線を$C$とする.
\[ x^2+4y^2=1,\quad x>0,\quad y>0 \]
$\mathrm{P}$を$C$上の点とする.$\mathrm{P}$で$C$に接する直線を$\ell$とし,$\mathrm{P}$を通り$\ell$と垂直な直線を$m$として,$x$軸と$y$軸と$m$で囲まれてできる三角形の面積を$S$とする.$\mathrm{P}$が$C$上の点全体を動くとき,$S$の最大値とそのときの$\mathrm{P}$の座標を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。