タグ「曲線」の検索結果

123ページ目:全1320問中1221問~1230問を表示)
長崎大学 国立 長崎大学 2010年 第4問
$a$を$a>1$を満たす定数とする.原点Oと点P$(1,\ 0)$を線分で結び,点Pと点Q$(a,\ \log a)$を曲線$y=\log x$で結ぶ.このようにして得られる曲線OPQを,$y$軸の周りに1回転させてできる立体の容器を考える.ただし,OPを含む部分を底面として,水平に置くものとする.次の問いに答えよ.

(1)この容器の容積$V$を$a$を用いて表せ.
(2)$m$を正の定数とする.この容器に,単位時間あたり$m$の水を一定の割合で注ぎ入れる.ただし,最初は水が全く入っていない状態とする.注ぎ始めてから時間$\displaystyle t \ \left( 0<t<\frac{V}{m} \right)$が経過したとき,底面から水面までの高さを$h$,水面の上昇する速度を$v$とする.$h$および$v$を$m,\ t$を用いて表せ.
熊本大学 国立 熊本大学 2010年 第2問
曲線$C:x^2+y^2=1 \ (x \geqq 0,\ y \geqq 0)$上に3点A$\displaystyle \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,P$(1,\ 0)$,Q$(0,\ 1)$をとり,$\displaystyle \angle \text{POR}=\theta \ \left( 0<\theta < \frac{\pi}{4} \right)$となる$C$上の点をR$(s,\ t)$とする.さらに,$C$上の点Xを2つのベクトル$s \overrightarrow{\mathrm{OA}}-t\overrightarrow{\mathrm{OX}}$と$t \overrightarrow{\mathrm{OA}}-s\overrightarrow{\mathrm{OX}}$が垂直になるようにとる.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OX}}$の内積の値を$\theta$を用いて表せ.
(2)条件をみたすXが弧AP上にとれるとき,$\theta$の範囲を求めよ.
(3)(2)で求めた$\theta$の範囲において,$\triangle$ROXの面積の最大値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第4問
関数$\displaystyle f(x)=\frac{\log x}{x\sqrt{x}} \ (x>1)$に対して次の問いに答えよ.必要ならば,自然対数の底$e$の値は$2<e<3$であることを用いてよい.

(1)関数$f(x)$の増減を調べよ.
(2)曲線$y=f(x)$上の点P$(t,\ f(t))$における法線$\ell$の方程式を求めよ.
(3)点Pから$x$軸に下ろした垂線をPQとする.(2)で求めた法線$\ell$と$x$軸との交点をRとする.2点Q,Rの距離の最大値を求めよ.
徳島大学 国立 徳島大学 2010年 第2問
$a,\ b,\ c,\ d$を実数とし,$f(x)=3x^4+ax^3+bx^2+cx+d$とする.曲線$y=f(x)$が変曲点$(1,\ 0)$,$\displaystyle \left( \frac{1}{3},\ -\frac{16}{27} \right)$をもつとき,次の問いに答えよ.

(1)$a,\ b,\ c,\ d$を求めよ.
(2)$y=f(x)$の増減,極値,グラフの凹凸を調べよ.
(3)$y=f(x)$のグラフをかけ.
大分大学 国立 大分大学 2010年 第3問
曲線$y=x^2$を$C$とする.$k>0$について,直線$y=kx$を$\ell_1$とし,原点を通り直線$\ell_1$に垂直な直線を$\ell_2$とする.

(1)曲線$C$と直線$\ell_2$の交点の座標を求めなさい.
(2)曲線$C$と直線$\ell_1$とで囲まれる部分の面積を$S_1$,曲線$C$と直線$\ell_2$とで囲まれる部分の面積を$S_2$とする.$S_1,\ S_2$をそれぞれ$k$の式で表しなさい.
(3)$S_1+S_2$の最小値を求めなさい.
大分大学 国立 大分大学 2010年 第2問
曲線$y=x^2$を$C$とする.$k>0$について,直線$y=kx$を$\ell_1$とし,原点を通り直線$\ell_1$に垂直な直線を$\ell_2$とする.

(1)曲線$C$と直線$\ell_2$の交点の座標を求めなさい.
(2)曲線$C$と直線$\ell_1$とで囲まれる部分の面積を$S_1$,曲線$C$と直線$\ell_2$とで囲まれる部分の面積を$S_2$とする.$S_1,\ S_2$をそれぞれ$k$の式で表しなさい.
(3)$S_1+S_2$の最小値を求めなさい.
福井大学 国立 福井大学 2010年 第3問
$k$は実数で,$k>1$とする.このとき,Oを原点とする座標平面上の2つの曲線
\[ C_1:x^2+y^2=1,\quad C_2:y=kx^2-\frac{5}{4} \]
は,$x$座標が正となる2つの交点A,Bを持つ.以下の問いに答えよ.

(1)A,Bの$x$座標をそれぞれ$\alpha,\ \beta$とおく.$\alpha^2+\beta^2$および$\alpha^2 \beta^2$を$k$を用いて表せ.
(2)線分ABの長さを求めよ.
(3)$\angle \text{AOB}=150^\circ$のとき,$k$の値を求めよ.
福井大学 国立 福井大学 2010年 第4問
$k$を実数とする.Oを原点とする座標平面上の曲線$C:y=\log x -k$について,$C$の接線のうちOを通るものを$\ell_1$とし,その接点をPとする.以下の問いに答えよ.

(1)$\ell_1$の方程式を,$k$を用いて表せ.
(2)点Pにおける$C$の法線を$\ell_2$とし,$\ell_2$と$x$軸との交点の$x$座標を$\alpha$とおく.$\alpha$を$k$を用いて表せ.さらに,$\alpha$が最小となる$k$の値および$\alpha$の最小値を求めよ.
(3)$k$を(2)で求めた値とするとき,$C$と$\ell_1$および$x$軸で囲まれた図形の面積を求めよ.
熊本大学 国立 熊本大学 2010年 第2問
曲線$C_1:y=x^2$上の点A$(a,\ a^2)$における接線が曲線$C_2:y=x^2-4$と交わる点をB,Cとする.ただし,Bの$x$座標はCの$x$座標より小さいとする.以下の問いに答えよ.

(1)線分BCの中点MおよびCの座標を$a$を用いて表せ.
(2)Mを通り$y$軸に平行な直線,線分MCおよび曲線$C_2$で囲まれた部分の面積を求めよ.
福井大学 国立 福井大学 2010年 第4問
曲線$C:y=e^x$上の点P$(t,\ e^t)$における接線を$\ell$とし,$\ell$と$x$軸との交点をQとする.さらに,Qを通り$\ell$に直交する直線と$C$との交点をRとする.以下の問いに答えよ.

(1)点Qの$x$座標を$t$を用いて表せ.
(2)$\triangle$PQRの外心が$y$軸上にあるときの$t$の値を求めよ.
(3)$t$を(2)で求めた値とするとき,直線PQ,QRと$C$とで囲まれる部分を$x$軸の周りに1回転して得られる回転体の体積を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。