「曲線」について
タグ「曲線」の検索結果
(116ページ目:全1320問中1151問~1160問を表示) 私立 久留米大学 2011年 第4問
整数$k$に対して,曲線$y=4e^{-x}$と$x$軸,および直線$x=k$と$x=k+1$とで囲まれた図形の面積を$S_k$とする.同じく,この図形を$x$軸のまわりに回転してできる立体の体積を$V_k$とする.このとき,$S_k=[$7$]$,$V_k=[$8$]$であり,無限級数$\displaystyle \sum_{n=1}^\infty S_n$は$[$9$]$に,$\displaystyle \sum_{n=1}^\infty V_n$は$[$10$]$に収束する.
私立 大同大学 2011年 第4問
$0<a<2$,$f(x)=x^5-a^4x$とする.
(1)曲線$y=f(x) (a \leqq x \leqq 2)$と直線$x=2$および$x$軸で囲まれる部分の面積$S(a)$を求めよ.
(2)曲線$y=f(x)$と$x$軸で囲まれる$2$つの部分の面積の和$T(a)$を求めよ.
(3)$S(a)+T(a)$を最小にする$a$の値を求めよ.
(1)曲線$y=f(x) (a \leqq x \leqq 2)$と直線$x=2$および$x$軸で囲まれる部分の面積$S(a)$を求めよ.
(2)曲線$y=f(x)$と$x$軸で囲まれる$2$つの部分の面積の和$T(a)$を求めよ.
(3)$S(a)+T(a)$を最小にする$a$の値を求めよ.
私立 福岡大学 2011年 第3問
$f(x)=x+\sqrt{2} \sin x (0 \leqq x \leqq 2\pi)$とし,曲線$y=f(x)$を$C$とするとき,次の問いに答えよ.
(1)関数$f(x)$の極値を求めよ.
(2)曲線$C$と$x$軸および直線$x=2\pi$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
(1)関数$f(x)$の極値を求めよ.
(2)曲線$C$と$x$軸および直線$x=2\pi$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
私立 福岡大学 2011年 第4問
曲線$y=-\cos x (0 \leqq x \leqq \pi)$を$y$軸のまわりに$1$回転させてできる形をした容器がある.ただし,単位は$\mathrm{cm}$とする.この容器に毎秒$1 \, \mathrm{cm}^3$ずつ水を入れたとき,$t$秒後の水面の半径を$r \, \mathrm{cm}$とし,水の体積を$V \, \mathrm{cm}^3$とする.水を入れ始めてからあふれるまでの時間内で考えるとき,次の問いに答えよ.
(1)水の体積$V$を$r$の式で表せ.
(2)水を入れ始めて$t$秒後の$r$の増加する速度$\displaystyle \frac{dr}{dt}$を$r$の式で表せ.
(1)水の体積$V$を$r$の式で表せ.
(2)水を入れ始めて$t$秒後の$r$の増加する速度$\displaystyle \frac{dr}{dt}$を$r$の式で表せ.
私立 聖マリアンナ医科大学 2011年 第4問
関数$\displaystyle f(x)=2 \log \frac{2+\sqrt{4-x^2}}{x}-\sqrt{4-x^2}$を考える.ただし,対数は自然対数である.以下の問いに答えなさい.
(1)関数$f(x)$の定義域は$0<x \leqq a$である.$a$の値を求めなさい.
(2)曲線$y=f(x)$の概形をかきなさい.なお,$y$の増減およびグラフの凹凸を調べた過程も記載しなさい.
(3)$0<x_0<a$とし,上問$(2)$の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(x_0,\ y_0)$における$C$の接線と$y$軸との交点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$の長さを求めなさい.ただし,$a$は上問$(1)$で求めた値とする.
(1)関数$f(x)$の定義域は$0<x \leqq a$である.$a$の値を求めなさい.
(2)曲線$y=f(x)$の概形をかきなさい.なお,$y$の増減およびグラフの凹凸を調べた過程も記載しなさい.
(3)$0<x_0<a$とし,上問$(2)$の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(x_0,\ y_0)$における$C$の接線と$y$軸との交点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$の長さを求めなさい.ただし,$a$は上問$(1)$で求めた値とする.
私立 関西学院大学 2011年 第4問
関数$f(x)=x^{-2} \log x (x>0)$について次の問いに答えよ.
(1)$f^\prime(x)$を求めよ.
(2)$f(x)$の極値を求めよ.
(3)曲線$y=f(x)$上の点$(p,\ f(p))$における接線の方程式を求めよ.また,原点を通る接線$\ell$の方程式を求めよ.
(4)$m \neq -1$に対して,不定積分$\displaystyle \int x^m \log x \, dx$を求めよ.また,曲線$y=f(x)$,直線$\ell$,および$x$軸で囲まれる部分の面積$S$を求めよ.
(1)$f^\prime(x)$を求めよ.
(2)$f(x)$の極値を求めよ.
(3)曲線$y=f(x)$上の点$(p,\ f(p))$における接線の方程式を求めよ.また,原点を通る接線$\ell$の方程式を求めよ.
(4)$m \neq -1$に対して,不定積分$\displaystyle \int x^m \log x \, dx$を求めよ.また,曲線$y=f(x)$,直線$\ell$,および$x$軸で囲まれる部分の面積$S$を求めよ.
私立 大阪薬科大学 2011年 第2問
次の問いに答えなさい.
原点を$\mathrm{O}$とする$xy$座標平面上に,$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(2,\ 0)$がある.$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を通る$2$次関数のグラフを$C$,また,$C$の$\mathrm{O}$における接線を$\ell$とする.
(1)$C$の方程式は,$y=[ ]$である.
(2)$C$と$x$軸で囲まれる図形の面積は$[ ]$である.
(3)$\ell$の方程式は,$y=[ ]$である.
(4)$\ell$と線分$\mathrm{OP}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(5)$C$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる曲線を$C^\prime$とする.$\ell$が$C^\prime$の接線であるとき,$a,\ b$が満たす条件を求めなさい.
原点を$\mathrm{O}$とする$xy$座標平面上に,$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(2,\ 0)$がある.$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を通る$2$次関数のグラフを$C$,また,$C$の$\mathrm{O}$における接線を$\ell$とする.
(1)$C$の方程式は,$y=[ ]$である.
(2)$C$と$x$軸で囲まれる図形の面積は$[ ]$である.
(3)$\ell$の方程式は,$y=[ ]$である.
(4)$\ell$と線分$\mathrm{OP}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(5)$C$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる曲線を$C^\prime$とする.$\ell$が$C^\prime$の接線であるとき,$a,\ b$が満たす条件を求めなさい.
私立 京都薬科大学 2011年 第3問
次の$[ ]$にあてはまる数または式を記入せよ.
$t>0$とする.放物線$y=x^2$上の点$\mathrm{P}(t,\ t^2)$における接線$\ell_1$と$x$軸との交点$\mathrm{A}$の$x$座標は$[ ]$である.原点$\mathrm{O}$および$2$点$\mathrm{P}$,$\mathrm{A}$を通る放物線の方程式は$y=[ ]x^2-[ ]x$であり,この放物線の原点における接線$\ell_2$の方程式は$y=-[ ]x$である.$2$直線$\ell_1$,$\ell_2$の交点の座標は$([ ],\ -[ ])$であり,放物線$y=x^2$と$2$直線$\ell_1$,$\ell_2$で囲まれた図形の面積は$[$*$]$である.
点$\mathrm{P}$を通り,$\ell_1$に垂直な直線$\ell_3$の方程式は$y=-[ ]x+[ ]$であり,$\ell_3$と$y$軸および曲線$y=x^2 (x \geqq 0)$で囲まれた図形の面積は$[$**$]$である.そして,$[$**$]:[$*$]=6:1$となるのは,$t=[ ]$のときである.
$t>0$とする.放物線$y=x^2$上の点$\mathrm{P}(t,\ t^2)$における接線$\ell_1$と$x$軸との交点$\mathrm{A}$の$x$座標は$[ ]$である.原点$\mathrm{O}$および$2$点$\mathrm{P}$,$\mathrm{A}$を通る放物線の方程式は$y=[ ]x^2-[ ]x$であり,この放物線の原点における接線$\ell_2$の方程式は$y=-[ ]x$である.$2$直線$\ell_1$,$\ell_2$の交点の座標は$([ ],\ -[ ])$であり,放物線$y=x^2$と$2$直線$\ell_1$,$\ell_2$で囲まれた図形の面積は$[$*$]$である.
点$\mathrm{P}$を通り,$\ell_1$に垂直な直線$\ell_3$の方程式は$y=-[ ]x+[ ]$であり,$\ell_3$と$y$軸および曲線$y=x^2 (x \geqq 0)$で囲まれた図形の面積は$[$**$]$である.そして,$[$**$]:[$*$]=6:1$となるのは,$t=[ ]$のときである.
私立 青山学院大学 2011年 第5問
曲線$y=e^{-x}$上の点$(1,\ e^{-1})$における接線と$x$軸の交点を$(a_1,\ 0)$とする.次に,$y=e^{-x}$上の点$(a_1,\ e^{-a_1})$における接線と$x$軸の交点を$(a_2,\ 0)$とする.以下,同様に$a_n (n=3,\ 4,\ 5,\ \cdots)$を定める.次の問に答えよ.
(1)$a_1$を求めよ.
(2)$a_n$を求めよ.
(3)曲線上の点$(a_n,\ e^{-a_n})$における接線と,直線$x=a_n$および$x$軸で囲まれた三角形の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
(1)$a_1$を求めよ.
(2)$a_n$を求めよ.
(3)曲線上の点$(a_n,\ e^{-a_n})$における接線と,直線$x=a_n$および$x$軸で囲まれた三角形の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
私立 青山学院大学 2011年 第5問
曲線$y=e^{x^2}-1 (x \geqq 0)$を$y$軸のまわりに回転させてできる容器がある.この容器に,時刻$t$における水の体積が$vt$となるように,単位時間あたり$v$の割合で水を注入する.ただし,$v$は正の定数であり,$y$軸の負の方向を鉛直下方とする.
(1)不定積分$\displaystyle \int \log (y+1) \, dy$を求めよ.
(2)水面の高さが$h$となったときの容器内の水の体積$V$を,$h$を用いて表せ.ただし,$h$は容器の底から測った高さである.
(3)水面の高さが$e^{10}-1$となった瞬間における,水面の高さの変化率$\displaystyle \frac{dh}{dt}$を求めよ.
(1)不定積分$\displaystyle \int \log (y+1) \, dy$を求めよ.
(2)水面の高さが$h$となったときの容器内の水の体積$V$を,$h$を用いて表せ.ただし,$h$は容器の底から測った高さである.
(3)水面の高さが$e^{10}-1$となった瞬間における,水面の高さの変化率$\displaystyle \frac{dh}{dt}$を求めよ.