タグ「曲線」の検索結果

114ページ目:全1320問中1131問~1140問を表示)
南山大学 私立 南山大学 2011年 第2問
座標平面上に,放物線$C:y=x^2-2x+1$と点$\mathrm{A}(1,\ -1)$がある.$\mathrm{A}$を通る$C$の接線のうち,傾きが負のものを$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\ell$に関して,$C$上の点$\displaystyle \mathrm{P} \left( \frac{5}{4},\ \frac{1}{16} \right)$と線対称な点を$\mathrm{Q}$とする.$\mathrm{Q}$の座標を求め,$C$,$\ell$,$\mathrm{P}$,$\mathrm{Q}$を同一平面上に図示せよ.
(3)$\ell$に関して,$y$軸と線対称な直線を$m$とする.$m$の方程式を求めよ.
(4)$\ell$に関して,$C$と線対称な曲線を$D$とする.$D$と$y$軸とで囲まれた部分の面積を求めよ.
南山大学 私立 南山大学 2011年 第2問
曲線$\displaystyle C:y=\frac{e^{a(x+2)}}{a} (a>0)$と原点$\mathrm{O}$から$C$に引いた接線$\ell$を考える.

(1)$\ell$の方程式を求めよ.
(2)$C$と$\ell$と$y$軸とで囲まれた部分の面積$S$を$a$を用いて表せ.
(3)(2)の$S$について,$S$を最小にする$a$の値と$S$の最小値を求めよ.
名城大学 私立 名城大学 2011年 第4問
曲線$y=a \log x (a>0)$と$x$軸および直線$x=e$で囲まれた部分を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V_1$,$D$を$y$軸のまわりに$1$回転してできる回転体の体積を$V_2$とする.ただし,$e$は自然対数の底とする.

(1)$D$を図示せよ.
(2)$\displaystyle \int_1^e \log x \, dx$を求めよ.
(3)$V_1$と$V_2$を求めよ.
(4)$V_1=V_2$となるときの$a$の値を求めよ.
名城大学 私立 名城大学 2011年 第2問
放物線$C_1$を$y=(x+1)^2+1$とする.$C_1$を$y$軸に関して対称移動した放物線を$C_2$とし,$C_1$を$x$軸に関して対称移動した放物線を$C_3$とする.次の各問に答えよ.

(1)$C_2$の方程式と$C_1$,$C_2$の交点$\mathrm{P}$の座標を求めよ.
(2)$C_3$を平行移動して得られる曲線で,頂点が$\mathrm{P}$となる放物線を$C_4$とする.$C_4$の方程式を求めよ.
(3)$3$つの放物線$C_1$,$C_2$,$C_4$によって囲まれる部分の面積を求めよ.
立教大学 私立 立教大学 2011年 第3問
座標平面上の$2$つの曲線$\displaystyle y=\frac{e^x+e^{-x}}{2}$,$\displaystyle y=\frac{e^x-e^{-x}}{2}$を,それぞれ$C_1$,$C_2$とする.$0$以上の実数$t$に対して,$x$座標が$t$である点における$C_1$の接線を$\ell_1$,$x$座標が$t$である点における$C_2$の接線を$\ell_2$とする.$\ell_1$と$\ell_2$との交点を$\mathrm{P}$,$\ell_1$と$y$軸との交点を$\mathrm{Q}$,$\ell_2$と$y$軸との交点を$\mathrm{R}$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)三角形$\mathrm{PQR}$の面積を$S(t)$とする.$0$以上の実数$t$を変化させるとき,$S(t)$の最大値を求めよ.また最大値を与える$t$の値を求めよ.
(3)$(2)$で求めた$S(t)$に対して,定積分$\displaystyle \int_0^2 S(t) \, dt$の値を求めよ.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \alpha=\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}+6 \right\}^{\frac{1}{3}}-\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}-6 \right\}^{\frac{1}{3}}$は整数を係数とする$3$次方程式
\[ 2x^3+[ア]x^2+[イ]x+[ウ]=0 \]
の解である.
(2)$f(x)=x^3-4x$とする.曲線$y=f(x)$上に$2$点$\mathrm{P}(t-1,\ f(t-1))$,$\mathrm{Q}(t+1,\ f(t+1))$をとる.線分$\mathrm{PQ}$が曲線$y=f(x)$と$\mathrm{P}$,$\mathrm{Q}$以外の点で交わるための$t$の条件は
\[ \frac{[エ]}{[オ]}<t<\frac{[カ]}{[キ]} \]
である.
上智大学 私立 上智大学 2011年 第2問
座標平面上に曲線$C:y=-x^2$および,$C$上の$2$点$\mathrm{A}(a,\ -a^2)$,$\mathrm{B}(b,\ -b^2)$(ただし$a<b$)を考える.$\mathrm{A}$における$C$の接線を$\ell$,$\mathrm{B}$における$C$の接線を$m$とする.$2$直線$\ell$,$m$の交点を$\mathrm{P}(x,\ y)$とする.

(1)$\mathrm{P}(x,\ y)$の各座標を$a,\ b$で表すと,
\[ x=\frac{[ク]}{[ケ]}a+\frac{[コ]}{[サ]}b,\quad y=[シ]ab \]
である.
(2)$\ell$と$m$が直交するように$\mathrm{A}$,$\mathrm{B}$が$C$上を動くとき,$\mathrm{P}(x,\ y)$は常に
\[ [ス]x+[セ]y-1=0 \]
を満たす.
(3)$\angle \mathrm{APB}=135^\circ$であるように$\mathrm{A}$,$\mathrm{B}$が$C$上を動くとき,$\mathrm{P}(x,\ y)$は常に
\[ [ソ]x^2+[タ] \left( y+\frac{[チ]}{[ツ]} \right)^2+1=0 \]
を満たし,$x=0$のとき$\mathrm{P}(0,\ y)$の$y$座標は
\[ \frac{[テ]}{[ト]}+\frac{[ナ]}{[ニ]} \sqrt{[ヌ]} \]
である.
立教大学 私立 立教大学 2011年 第1問
次の空欄アに$①$~$④$のいずれかを記入せよ.また空欄イ~スに当てはまる数または式を記入せよ.

(1)実数$x,\ y$に対して,$x^2+y^2 \leqq 1$は「$-1 \leqq x \leqq 1$かつ$-1 \leqq y \leqq 1$」であるための何条件かを,$①$「必要条件」,$②$「十分条件」,$③$「必要十分条件」,$④$「必要条件でも十分条件でもない」のうちから選択すると,$[ア]$となる.
(2)$3x^2-xy-2y^2-x+6y+k$が,$x,\ y$の整数係数の$1$次式の積に因数分解されるとき,$k=[イ]$である.
(3)$3$つの数$\log_2 x$,$\log_2 10$,$\log_2 20$がこの順で等差数列であるとき,$x=[ウ]$である.
(4)$\displaystyle \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots +\frac{1}{100 \cdot 101}=\frac{[エ]}{[オ]}$である.
(5)座標平面上の曲線$y=x^3+ax^2+bx$上の点$(2,\ 4)$における接線が$x$軸に平行であるとき,$a=[カ]$,$b=[キ]$である.
(6)自宅から$2000 \; \mathrm{m}$離れている駅まで,はじめに毎分$80 \; \mathrm{m}$で歩き,途中から毎分$170 \; \mathrm{m}$で走るものとする.出発してから$16$分以内に駅に到着するには,歩きはじめてから$[ク]$分以内に走り出さなければならない.
(7)点$\mathrm{A}(2,\ 3)$,点$\mathrm{B}(p,\ q)$と原点$\mathrm{O}$がつくる三角形$\mathrm{OAB}$について,$\angle \mathrm{OAB}=90^\circ$のとき,$p,\ q$の満たす条件は$p \neq 2$かつ$p=[ケ]$である.
(8)実数$x,\ y,\ a,\ b$が条件$x^2+y^2=2$,および$a^2+b^2=3$を満たすとき,$ax+by$の最大値は$[コ]$で,最小値は$[サ]$である.
(9)$\displaystyle x=\frac{\sqrt{6}-\sqrt{10}i}{3}$とし,$x$と共役な複素数を$y$とするとき,$x^3+y^3=[シ]$となる.ただし,$i$は虚数単位とする.
\mon $\displaystyle \sin x+\sin y=\frac{1}{3}$,$\displaystyle \cos x-\cos y=\frac{1}{2}$のとき,$\cos (x+y)$の値は$[ス]$である.
上智大学 私立 上智大学 2011年 第3問
座標平面において,動点$\mathrm{P}$の座標$(x,\ y)$が時刻$t$の関数として
\[ x=t^{\frac{1}{4}} (1-t)^{\frac{3}{4}},\quad y=t^{\frac{3}{4}} (1-t)^{\frac{1}{4}} \quad (0 \leqq t \leqq 1) \]
で与えられている.

(1)動点$\mathrm{P}$の$x$座標が最大になるのは$\displaystyle t=\frac{[ナ]}{[ニ]}$のときであり,$y$座標が最大になるのは$\displaystyle t=\frac{[ヌ]}{[ネ]}$のときである.
(2)$0<t<1$のとき,動点$\mathrm{P}$の速さの最小値は$\displaystyle \frac{\sqrt{[ノ]}}{[ハ]}$である.
(3)動点$\mathrm{P}$が直線$y=x$上に来るのは$t=0$のとき,$\displaystyle t=\frac{[ヒ]}{[フ]}$のとき,$t=1$のときの$3$回である.
(4)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,動点$\mathrm{P}$の描く曲線を$L$とする.$L$で囲まれる図形の面積は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
日本女子大学 私立 日本女子大学 2011年 第1問
曲線$y=e^x$を$C$とする.点$\mathrm{Q}_1$を$x$軸上に取る.点$\mathrm{Q}_1$を通り$y$軸と平行な直線を$\ell_1$とする.$\ell_1$が$C$と交わる点を$\mathrm{P}_1$とする.点$\mathrm{P}_1$における$C$の接線を$\ell_1^\prime$とする.$\ell_1^\prime$が$x$軸と交わる点を$\mathrm{Q}_2$とする.さらに,点$\mathrm{Q}_2$を通り$y$軸と平行な直線を$\ell_2$とする.$\ell_2$が$C$と交わる点を$\mathrm{P}_2$とする.点$\mathrm{P}_2$における$C$の接線を$\ell_2^\prime$とする.$\ell_2^\prime$が$x$軸と交わる点を$\mathrm{Q}_3$とする.これを続けて,$C$上の点$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$と$x$軸上の点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\cdots$,$\mathrm{Q}_n$,$\cdots$を決める.$\mathrm{P}_1$の座標を$(a,\ e^a)$とするとき,次の問いに答えよ.

(1)$\mathrm{Q}_n$の$x$座標を求めよ.
(2)$C$と直線$\ell_n^\prime$および$\ell_{n+1}$で囲まれた図形の面積を$s_n$とするとき,無限級数$s_1+s_2+\cdots +s_n+\cdots$の和を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。