タグ「曲線」の検索結果

110ページ目:全1320問中1091問~1100問を表示)
山形大学 国立 山形大学 2011年 第3問
座標平面上で原点を中心とする角$\theta \ $(ラジアン)の回転移動を表す行列を$R(\theta)$とする.また,$\displaystyle 0<\theta<\pi \ \left( \theta \neq \frac{\pi}{2} \right)$となる$\theta$に対し,直線$y=(\tan \theta)x$に関する対称移動を表す行列を$A(\theta)$とする.このとき,次の問に答えよ.

(1)行列$X=R(\theta)^{-1}A(\theta)R(\theta)$を求めよ.また,$s$に対して$XR(s)X=R(t)$を満たす$t$を求めよ.ただし,$R(\theta)^{-1}$は$R(\theta)$の逆行列である.
(2)$\displaystyle 0<\alpha<\pi,\ 0<\beta<\pi \ \left( \alpha,\ \beta \neq \frac{\pi}{2} \right)$のとき,$A(\alpha) A(\beta)$を求めよ.
(3)$\displaystyle 0<\beta<\frac{\pi}{2}<\alpha<\pi$のとき,$A(\alpha)A(\beta)=A(\beta)A(\alpha)$となるための必要十分条件を$\alpha,\ \beta$を用いて表せ.
(4)$\displaystyle 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2}$で,点$(\tan \alpha,\ \tan \beta)$が曲線$\displaystyle y=\frac{3x-1}{x+3}$上にあるとき,次の\maru{1},\maru{2}に答えよ.

\mon[\maru{1}] $\tan (\alpha-\beta)$の値を求めよ.
\mon[\maru{2}] $A(\alpha)A(\beta)$を求めよ.
大阪教育大学 国立 大阪教育大学 2011年 第3問
座標平面上の円$x^2+y^2=1$を$C$とする.点Pが行列$A=\biggl( \begin{array}{cc}
1 & 1 \\
1 & 0
\end{array} \biggr)$で表される1次変換で点Qに移されるとき,次の問に答えよ.

(1)点Pが円$C$上を動くとき,点Qの軌跡を求め,図示せよ.
(2)(1)で求めた曲線で囲まれた図形の面積$S$を求めよ.
山形大学 国立 山形大学 2011年 第4問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに$1$回転してできる回転体の体積を求めよ.
東京農工大学 国立 東京農工大学 2011年 第3問
2つの関数
\[ f(x)=\sin 3x+\sin x+\cos x,\quad g(x)=\cos 3x \]
について,次の問いに答えよ.

(1)区間$0 \leqq x \leqq n\pi$における2つの曲線$y=f(x),\ y=g(x)$の交点の個数を$r$とする.$r$を$n$の式で表せ.ただし,$n$は正の整数とする.
(2)区間$0 \leqq x \leqq \pi$において$f(x)<g(x)$をみたす$x$の範囲を求めよ.
(3)定積分
\[ I=\int_0^\pi |f(x)-g(x)| \, dx \]
の値を求めよ.
東京農工大学 国立 東京農工大学 2011年 第4問
$c$を正の実数とする.関数$f(x)=(x+c)e^{2x}$について,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$y=f(x)$は$x=k$のとき最小値$m$をとる.このとき,$k$と$m$を$c$の式で表せ.
(2)$k$を(1)で求めた値とする.このとき,定積分
\[ T=\int_k^{-c} f(x) \, dx \]
を$c$の式で表せ.
(3)$T$を(2)で求めた値とする.区間$-c \leqq x \leqq 0$において,曲線$y=f(x)$,$x$軸および$y$軸のすべてで囲まれた部分の面積を$S$とする.$\displaystyle S=\frac{e}{2-e}T$となるときの$c$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2011年 第2問
次の方程式で表される曲線$C$を考える.
\[ C:|x-100|=y |y-3|e^y \]

(1)曲線$C$の概形を描け.
(2)曲線$C$で囲まれる部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2011年 第2問
次の方程式で表される曲線$C$を考える.
\[ C:|x-100|=y |y-3|e^y \]

(1)曲線$C$の概形を描け.
(2)曲線$C$で囲まれる部分の面積を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第6問
曲線$C$は極方程式$r=2 \cos \theta$で定義されているとする.このとき,次の各問いに答えよ.

(1)曲線$C$を直交座標$(x,\ y)$に関する方程式で表し,さらに図示せよ.
(2)点$(-1,\ 0)$を通る傾き$k$の直線を考える.この直線が曲線$C$と$2$点で交わるような$k$の値の範囲を求めよ.
(3)(2)のもとで,$2$交点の中点の軌跡を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2011年 第3問
次の問いに答えよ.

(1)不定積分$\displaystyle \int \frac{1}{x^2} \log x \, dx$および$\displaystyle \int \frac{1}{x^2} (\log x)^2 \, dx$を求めよ.
(2)実数$a$に対して,曲線$\displaystyle y=\frac{1}{x}(a+\log x) \ (1 \leqq x \leqq e)$と$x$軸および2直線$x=1,\ x=e$で囲まれた部分を,$x$軸のまわりに1回転させてできる立体の体積を$V$とする.$V$を$a$を用いて表せ.また,$a$が実数全体を動くとき,$V$を最小とする$a$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2011年 第3問
曲線$y=e^{ax+b} \ (a \geqq 1)$と曲線$y=e^{-x}$が一点で交わり,交点におけるそれぞれの接線が垂直に交わっているとする.次の問いに答えよ.

(1)交点の座標を$(x(a),\ y(a))$とおくとき,$b,\ x(a),\ y(a)$をそれぞれ$a$を用いて表せ.
(2)曲線$y=e^{ax+b} \ (a \geqq 1)$を$C(a)$で表す.曲線$C(a)$と曲線$C(a+1)$の交点の$x$座標を$X(a)$とおくとき,
\[ \lim_{a \to \infty}(X(a)-x(a)) \]
を求めよ.
(3)$X(a)-x(a)$は$a \geqq 1$のとき単調減少であることを示せ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。