タグ「曲線」の検索結果

101ページ目:全1320問中1001問~1010問を表示)
大同大学 私立 大同大学 2012年 第5問
$\displaystyle f(x)=\sin 2x \log (2 \sin x) \left( \frac{\pi}{12} \leqq x \leqq \frac{3}{4} \pi \right)$とする.

(1)不定積分$\displaystyle \int t \log t \, dt$を求めよ.
(2)$2 \sin x=t$とおいて置換積分することにより,不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$f(x) \geqq 0$をみたす$x$の範囲を求めよ.
(4)曲線$y=f(x)$と$x$軸で囲まれる部分の面積を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の$3$辺の長さがそれぞれ
\[ \mathrm{AB}=5,\quad \mathrm{BC}=7,\quad \mathrm{AC}=4 \sqrt{2} \]
であるとする.この三角形の$\angle \mathrm{ABC}$の大きさを$B$で表すと
\[ \cos B=\frac{[ア]}{[イ]} \]
であり,$\triangle \mathrm{ABC}$の外接円の半径$R$は,
\[ R=\frac{[ウ]}{[エ]} \sqrt{[オ]} \]
である.また,$\angle \mathrm{ABC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点で$\mathrm{B}$と異なる点を$\mathrm{D}$とする.このとき,
\[ \mathrm{AD}=\sqrt{[カ][キ]} \]
であり,さらに$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とすると,$\triangle \mathrm{AOD}$の面積は$[ク]$となる.
(2)赤玉$3$個,白玉$4$個,青玉$5$個が入っている袋から,玉を同時に$4$個取り出すとき,次の確率を求めよ.

(i) 取り出した玉の色がすべて青色である確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.

(ii) 取り出した玉の色が少なくとも$2$種類である確率は,$\displaystyle \frac{[シ][ス][セ]}{165}$である.

(iii) 取り出した玉の色が$3$種類である確率は,$\displaystyle \frac{[ソ]}{[タ][チ]}$である.
\mon[$\tokeishi$] 取り出した玉に赤玉が少なくとも$2$個含まれている確率は,$\displaystyle \frac{[ツ][テ]}{[ト][ナ]}$である.

(3)関数$f_0(x),\ f_1(x),\ f_2(x)$を
\[ f_0(x)=e^{x^2},\quad f_1(x)=xe^{x^2},\quad f_2(x)=x^2e^{x^2} \]
と定める.ただし,$e$は自然対数の底であり,$e^{x^2}$は$e^{(x^2)}$を表す.
関数$f_n(x) (n=0,\ 1,\ 2)$の導関数を$g_n(x)$とすると,
\setstretch{2.0}
\[ \begin{array}{l}
g_0(x)=[ニ]xe^{x^2} \\
g_1(x)=([ヌ]x^2+[ネ])e^{x^2} \\
g_2(x)=([ノ]x^3+[ハ]x)e^{x^2}
\end{array} \]
\setstretch{1.4}
である.関数$h(x)$を
\[ h(x)=(3x^3+8x^2-15x+4)e^{x^2} \]
と定めると,座標平面で曲線$y=h(x)$は$x$軸と$3$点で交わり,その交点の$x$座標は$-[ヒ]$,$\displaystyle\frac{[フ]}{[ヘ]}$,$[ホ]$である.また,
\[ h(x)=\frac{[マ]}{[ミ]} g_2(x)+[ム]g_1(x)-[メ]g_0(x) \]
であるから,曲線$y=h(x)$と$x$軸で囲まれた図形のうち$x$軸の下にある部分の面積を$S$とすると,
\[ S=\frac{1}{[モ]} \left( [ヤ]e-[ユ][ヨ] e^{\frac{[ラ]}{[リ]}} \right) \]
となる.
杏林大学 私立 杏林大学 2012年 第4問
座標平面上の点$\mathrm{P}(x,\ y)$が$t \geqq 0$に対して
\[ x=1-e^{-3t},\quad y=8-3t-8e^{-3t} \]
で表されるとき,以下の問いに答えよ.

(1)$t \to \infty$のとき$x$の極限値は
\[ \lim_{t \to \infty} x=[ア] \]
であり,$t=0$のとき
\[ \frac{dy}{dt}=[イウ] \]
となる.また,任意の$t$に対して

$\displaystyle \frac{d^2 x}{dt^2}+[エ] \frac{dx}{dt}=[オ]$,

$\displaystyle \frac{d^2 y}{dt^2}+[カ] \frac{dy}{dt}=[キク]$

が成り立つ.
(2)$\displaystyle \frac{dy}{dx}=0$となる$t$の値を$\alpha$とすると,$e^\alpha=[ケ]$となる.このときの$x$の値を$\beta$とすると,$\displaystyle \beta=\frac{[コ]}{[サ]}$であり,$y$の値は$[シ]-[ス] \alpha$である.
(3)$0 \leqq t \leqq \alpha$に対して点$\mathrm{P}$の描く曲線と,直線$x=\beta$および$x$軸で囲まれた部分の面積は$\displaystyle \frac{[セソ]}{[タチ]}+\frac{[ツ]}{[テ]} \alpha$となる.
九州産業大学 私立 九州産業大学 2012年 第5問
関数$f(x)=xe^{-x} (0 \leqq x \leqq 3)$とする.曲線$y=f(x)$,$x$軸および直線$x=3$で囲まれる図形を$G$とする.

(1)関数$f(x)$の導関数$f^\prime(x)=[ア]$である.
(2)関数$f(x)$の極値は$[イ]$である.
(3)曲線$y=f(x)$の変曲点の座標は$[ウ]$である.
(4)図形$G$の面積は$[エ]$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2012年 第3問
関数$f(x)$は,

$\displaystyle (ⅰ) f \left( \frac{\sqrt{3}}{3} \right)=2$
$\displaystyle (ⅱ) \int_0^t \sqrt{1+\{f^\prime(x)\}^2} \, dx=t^3+t (t>0)$

を満たすものとする.このとき,以下の設問に答えなさい.

(1)この条件を満たす関数$f(x)$は
\[ f(x)=[$1$] \]
または
\[ f(x)=[$2$] \]
である.
(2)曲線$y=[$1$]$および曲線$y=[$2$]$の交点の座標をすべて求めなさい.ただし,$[$1$]$,$[$2$]$は$(1)$で求めた関数とする.
(3)点$(x,\ y)$が$(2)$の$2$曲線$y=[$1$]$および$y=[$2$]$で囲まれた範囲(境界を含む)を動くとき,$\sqrt{7}x+3y$の最小値を求めなさい.
東京理科大学 私立 東京理科大学 2012年 第3問
$a$を$a>2$であるような実数とする.座標平面上で,曲線$\displaystyle y=\frac{1}{x}$を$C_1$とし,点$(a,\ a)$を中心とし点$(1,\ 1)$を通る円を$C_2$とする.曲線$C_1$と円$C_2$の点$(1,\ 1)$以外の共有点のうち,$x$座標が$1$より小さいものを$\mathrm{B}$とする.点$\mathrm{B}$から直線$y=x$に下ろした垂線と直線$y=x$の交点を$\mathrm{H}$とする.

(1)円$C_2$の方程式を求めよ.
(2)点$\mathrm{H}$の座標を求めよ.また,点$\mathrm{H}$と点$(1,\ 1)$の距離を求めよ.
(3)$t$を正の実数とする.直線$y=x$上にあり点$(1,\ 1)$からの距離が$t$である点のうち,$x$座標が$1$より大きいものを$\mathrm{P}$とする.点$\mathrm{P}$を通り直線$y=x$に垂直な直線と曲線$C_1$の交点のうち,$x$座標が$1$より小さいものを$\mathrm{Q}$とする.このとき,線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(4)直線$y=x$と線分$\mathrm{BH}$,および曲線$C_1$で囲まれた部分を,直線$y=x$の周りに$1$回転させてできる立体の体積を求めよ.
安田女子大学 私立 安田女子大学 2012年 第4問
曲線$C:y=2x^2 (x>0)$上の点$\mathrm{P}_1(x_1,\ 2{x_1}^2)$における接線が$x$軸と交わる点の$x$座標を$x_2$とする.曲線$C$上の点$\mathrm{P}_2(x_2,\ 2{x_2}^2)$における接線が$x$軸と交わる点の$x$座標を$x_3$とし,曲線$C$上に点$\mathrm{P}_3(x_3,\ 2{x_3}^2)$を定める.以下,同様に曲線$C$上の点$\mathrm{P}_3,\ \mathrm{P}_4,\ \cdots,\ \mathrm{P}_{n-1},\ \mathrm{P}_n$における接線と$x$軸が交わる点の$x$座標を$x_4,\ x_5,\ \cdots,\ x_n,\ x_{n+1}$とする.$x_1=1$とするとき,次の問いに答えよ.

(1)点$\mathrm{P}_1$および点$\mathrm{P}_2$の座標を求めよ.
(2)点$\mathrm{P}_n(x_n,\ 2{x_n}^2)$における接線と$x$軸との交点の$x$座標$x_{n+1}$を$x_n$で表せ.
(3)$x_n$を$n$の式で表せ.
兵庫県立大学 公立 兵庫県立大学 2012年 第2問
$xy$平面上の点$(1,\ 4)$を通り,また,曲線$y=f(x)=x^3+3x^2+x+7$と$1$点で接し,他の$1$点で交わる直線の方程式をすべて求めなさい.
大阪市立大学 公立 大阪市立大学 2012年 第3問
$0 \leqq x \leqq 2\pi$の範囲で二つの曲線$y=\sin x$と$y= k \cos x$を考える.ただし,$k>0$とする.この二つの曲
線の交点の$x$座標を$\alpha,\ \beta\ (0 \leqq \alpha < \beta \leqq 2\pi)$とし,$\alpha \leqq x \leqq \beta$の範囲でこの二つの曲線に囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$k$と$\beta$を$\alpha$を用いて表せ.
(2)$S$を$k$を用いて表せ.
(3)$S=4$のとき,$\alpha \leqq x \leqq \theta$の範囲でこの二つの曲線に囲まれた図形の面積が2となるような$\theta$の値を求めよ.
青森公立大学 公立 青森公立大学 2012年 第3問
$x$の3次関数$f(x)=2x^3-3x^2$について,曲線$C_1:y=f(x)$と曲線$C_2:y=f(|x|)$を考える.次の問いに答えよ.

(1)曲線$C_1$のグラフを描け.
(2)$a$を実数とする.曲線$C_1$の接線のなかで点$(0,\ a)$を通る接線の本数を求めよ.
(3)曲線$C_2$のグラフの概形を描け.
(4)$b$は$\displaystyle b>\frac{1}{2}$を満たす実数とする.曲線$C_2$の接線のなかで点$(b,\ 4)$を通る接線の本数を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。