タグ「曲線」の検索結果

1ページ目:全1320問中1問~10問を表示)
京都大学 国立 京都大学 2016年 第1問
$xy$平面内の領域
\[ x^2+y^2 \leqq 2,\quad |x| \leqq 1 \]
で,曲線$C:y=x^3+x^2-x$の上側にある部分の面積を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第4問
座標平面上に曲線$C_1:y=x^3-x$と,$C_1$を$x$軸方向に$t$(ただし,$t>0$)だけ平行移動させた曲線$C_2$がある.$C_1$と$C_2$は$2$つの共有点を持つという.

(1)$t$の範囲を求めよ.
(2)$C_1$と$C_2$で囲まれる図形の面積$S$を$t$を用いて表せ.
(3)$S$の最大値とそのときの$t$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第5問
$f(x)=\sqrt{x}e^{-\frac{x}{2}}$(ただし,$x>0$)に対し,座標平面上の曲線$C:y=f(x)$を考える.

(1)$f(x)$の極値を求めよ.
(2)曲線$C$,$2$直線$x=t$,$x=t+1$(ただし,$t>0$)および$x$軸で囲まれる図形を,$x$軸の周りに$1$回転して得られる立体の体積$V$を$t$を用いて表せ.
(3)$V$の最大値を求めよ.
大阪大学 国立 大阪大学 2016年 第2問
曲線$\displaystyle C:y=|\displaystyle\frac{1|{2}x^2-6}-2x$を考える.

(1)$C$と直線$L:y=-x+t$が異なる$4$点で交わるような$t$の値の範囲を求めよ.
(2)$C$と$L$が異なる$4$点で交わるとし,その交点を$x$座標が小さいものから順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$とするとき,
\[ \frac{|\overrightarrow{\mathrm{P|_1 \mathrm{P}_2}}+|\overrightarrow{\mathrm{P|_3 \mathrm{P}_4}}}{|\overrightarrow{\mathrm{P|_2 \mathrm{P}_3}}}=4 \]
となるような$t$の値を求めよ.
(3)$t$が$(2)$の値をとるとき,$C$と線分$\mathrm{P}_2 \mathrm{P}_3$で囲まれる図形の面積を求めよ.
神戸大学 国立 神戸大学 2016年 第3問
$a$を正の定数とし,$2$曲線$C_1:y=\log x$,$C_2:y=ax^2$が点$\mathrm{P}$で接しているとする.以下の問に答えよ.

(1)$\mathrm{P}$の座標と$a$の値を求めよ.
(2)$2$曲線$C_1$,$C_2$と$x$軸で囲まれた部分を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
神戸大学 国立 神戸大学 2016年 第5問
極方程式で表された$xy$平面上の曲線$r=1+\cos \theta (0 \leqq \theta \leqq 2\pi)$を$C$とする.以下の問に答えよ.

(1)曲線$C$上の点を直交座標$(x,\ y)$で表したとき,$\displaystyle \frac{dx}{d\theta}=0$となる点,および$\displaystyle \frac{dy}{d\theta}=0$となる点の直交座標を求めよ.
(2)$\displaystyle \lim_{\theta \to \pi} \frac{dy}{dx}$を求めよ.
(3)曲線$C$の概形を$xy$平面上にかけ.
(4)曲線$C$の長さを求めよ.
大分大学 国立 大分大学 2016年 第4問
$2$つの曲線$\displaystyle y=x+2 \cos x \left( \frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$と$\displaystyle y=x-2 \cos x \left( \frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$をつないでできる曲線を$C$とする.

(1)曲線$C$の概形を図示しなさい.
(2)$k$を実数とする.曲線$C$と直線$y=k$が異なる$2$点で交わるための$k$の値の範囲を求めなさい.
(3)曲線$C$で囲まれた部分を$x$軸のまわりに$1$回転してできる立体の体積を求めなさい.
九州大学 国立 九州大学 2016年 第1問
座標平面上の曲線$C_1,\ C_2$をそれぞれ

$C_1:y=\log x \quad (x>0)$
$C_2:y=(x-1)(x-a)$

とする.ただし,$a$は実数である.$n$を自然数とするとき,曲線$C_1$,$C_2$が$2$点$\mathrm{P}$,$\mathrm{Q}$で交わり,$\mathrm{P}$,$\mathrm{Q}$の$x$座標はそれぞれ$1,\ n+1$となっている.また,曲線$C_1$と直線$\mathrm{PQ}$で囲まれた領域の面積を$S_n$,曲線$C_2$と直線$\mathrm{PQ}$で囲まれた領域の面積を$T_n$とする.このとき,以下の問いに答えよ.

(1)$a$を$n$の式で表し,$a>1$を示せ.
(2)$S_n$と$T_n$をそれぞれ$n$の式で表せ.

(3)極限値$\displaystyle \lim_{n \to \infty} \frac{S_n}{n \log T_n}$を求めよ.
北海道大学 国立 北海道大学 2016年 第1問
$a,\ b,\ c$を実数とし,
\[ f(x)=x^3+ax^2+bx+c \]
とおく.曲線$C:y=f(x)$上に異なる$2$点$\mathrm{P}(s,\ f(s))$,$\mathrm{Q}(t,\ f(t))$がある.

(1)$\mathrm{P}$における$C$の接線の方程式を求めよ.
(2)$\mathrm{P}$における$C$の接線と$\mathrm{Q}$における$C$の接線が平行になるための条件を$s,\ t,\ a$の関係式として求めよ.
(3)$(2)$の条件のもとで,線分$\mathrm{PQ}$の中点が$C$上にあることを示せ.
広島大学 国立 広島大学 2016年 第2問
次の問いに答えよ.

(1)$a$を正の定数とする.関数$\displaystyle f(x)=\frac{e^x-ae^{-x}}{2}$の逆関数$f^{-1}(x)$を求めよ.
(2)$(1)$で求めた$f^{-1}(x)$の導関数を求めよ.
(3)$c$を正の定数とする.$x$軸,$y$軸,直線$x=c$および曲線$\displaystyle y=\frac{1}{\sqrt{x^2+c^2}}$で囲まれる部分の面積を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。