タグ「時計」の検索結果

1ページ目:全20問中1問~10問を表示)
九州大学 国立 九州大学 2016年 第3問
座標平面上で円$x^2+y^2=1$に内接する正六角形で,点$\mathrm{P}_0(1,\ 0)$を$1$つの頂点とするものを考える.この正六角形の頂点を$\mathrm{P}_0$から反時計まわりに順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$とする.ある頂点に置かれている$1$枚のコインに対し,$1$つのサイコロを$1$回投げ,出た目に応じてコインを次の規則にしたがって頂点上を動かす.


\mon[(規則)$(ⅰ)$] $1$から$5$までの目が出た場合は,出た目の数だけコインを反時計まわりに動かす.例えば,コインが$\mathrm{P}_4$にあるときに$4$の目が出た場合は$\mathrm{P}_2$まで動かす.
(ii) $6$の目が出た場合は,$x$軸に関して対称な位置にコインを動かす.ただし,コインが$x$軸上にあるときは動かさない.例えば,コインが$\mathrm{P}_5$にあるときに$6$の目が出た場合は$\mathrm{P}_1$に動かす.

はじめにコインを$1$枚だけ$\mathrm{P}_0$に置き,$1$つのサイコロを続けて何回か投げて,$1$回投げるごとに上の規則にしたがってコインを動かしていくゲームを考える.以下の問いに答えよ.

(1)$2$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(2)$3$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(3)$n$を自然数とする.$n$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
千葉大学 国立 千葉大学 2015年 第4問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第6問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第5問
座標平面上において,原点$\mathrm{O}$を中心とする半径$1$の円$C_0$に,半径$1$の円$C_1$が外接しながらすべることなく回転する.点$\mathrm{A}$を動く円$C_1$の中心とし,点$\mathrm{P}$を円$C_1$の円周上の定点とする.最初,点$\mathrm{A}$は座標$(2,\ 0)$の位置にあり,点$\mathrm{P}$は座標$(1,\ 0)$の位置にある.円$C_1$が円$C_0$の周りを反時計まわりに一周し,点$\mathrm{A}$が座標$(2,\ 0)$に戻ってくるとき,点$\mathrm{P}$のえがく曲線を$C$とする.動径$\mathrm{OA}$が$x$軸の正の部分から角$\theta (0 \leqq \theta \leqq 2\pi)$だけ回転した位置にあるとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{P}$の座標$(x(\theta),\ y(\theta))$について,
\[ x(\theta)=2 \cos \theta-\cos 2\theta,\quad y(\theta)=2 \sin \theta-\sin 2\theta \]
が成り立つことを示せ.
(2)導関数$\displaystyle \frac{d}{d\theta} x(\theta)$を求め,$x(\theta)$の$\theta$に関する増減表を作成せよ.ただし,凹凸については言及しなくてよい.
(3)曲線$C$で囲まれる図形の面積$S$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
$1$辺の長さが$1$である正六角形の頂点を時計の針の回り方と逆回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とし,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{b}$とする.

(1)$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[$1$][$2$]}{[$3$]}$,$\displaystyle (2 \overrightarrow{a}+3 \overrightarrow{b}) \cdot (3 \overrightarrow{a}-2 \overrightarrow{b})=\frac{[$4$][$5$]}{[$6$]}$である.
(2)$\overrightarrow{\mathrm{AP}}=2s \overrightarrow{a}+(3-3s) \overrightarrow{b}$で与えられる点$\mathrm{P}$が$\triangle \mathrm{ACF}$の内部に存在するような実数$s$の値の範囲は
\[ \frac{[$7$]}{[$8$]}<s<\frac{[$9$]}{[$10$]} \]
である.
(3)正六角形$\mathrm{ABCDEF}$の外接円を$\mathrm{S}$とする.$\mathrm{S}$の周上の任意の点$\mathrm{Q}$に対して,ベクトル$\overrightarrow{q}=\overrightarrow{\mathrm{AQ}}$は
\[ [$11$][$12$] \overrightarrow{q} \cdot \overrightarrow{q}+[$13$][$14$] \overrightarrow{a} \cdot \overrightarrow{q}+2 \overrightarrow{b} \cdot \overrightarrow{q}=0 \]
をみたす.
西南学院大学 私立 西南学院大学 2014年 第2問
正五角形$\mathrm{ABCDE}$がある.点$\mathrm{P}$は最初,頂点$\mathrm{A}$にあり,さいころを投げるたびに出た目の数だけ正五角形の頂点を反時計まわりに移動する.このとき,

(1)さいころを$1$回投げたあと,点$\mathrm{P}$が頂点$\mathrm{A}$にある確率は$\displaystyle \frac{[カ]}{[キ]}$である.

(2)さいころを$3$回投げたあと,点$\mathrm{P}$が頂点$\mathrm{A}$にある確率は$\displaystyle \frac{[クケ]}{[コサシ]}$である.

(3)さいころを$3$回投げたあと,点$\mathrm{P}$が初めて頂点$\mathrm{A}$に止まる確率は$\displaystyle \frac{[ス]}{[セソ]}$である.
香川大学 国立 香川大学 2013年 第3問
座標平面上の点$(x,\ y)$は,$x,\ y$がともに整数のとき格子点 \\
という.原点$(0,\ 0)$に番号$1$をふり,以下$(1,\ 0)$に番号$2$, \\
$(1,\ 1)$に番号$3$と,各格子点に図のように反時計まわりに番 \\
号をふっていく.このとき,次の問に答えよ.
\img{665_2850_2013_1}{30}


(1)$n$が自然数のとき,格子点$(n,\ -n)$にふられる番号を$n$の \\
式で表せ.
(2)$n$が自然数のとき,格子点$(n+1,\ n+1)$にふられる番号を$n$の式で表せ.
(3)番号$1000$がふられる格子点の座標を求めよ.
山形大学 国立 山形大学 2013年 第3問
$R,\ r$を正の実数とし,$2r<R \leqq 3r$とする.右図のように,原点 \\
$\mathrm{O}$を中心とする半径$R$の固定された円$S$の内部に点$\mathrm{O}^\prime$を中心と \\
する半径$r$の円$T$があり,円$T$は円$S$に接しながらすべらずに \\
転がるものとする.ただし,点$\mathrm{O}^\prime$は点$\mathrm{O}$のまわりを反時計まわり \\
に動くものとする.はじめに点$\mathrm{O}^\prime$は$(R-r,\ 0)$の位置にあり, \\
円$T$上の点$\mathrm{P}$は$(R,\ 0)$の位置にあるとする.$x$軸の正の部分と \\
動径$\mathrm{OO}^\prime$のなす角が$\theta$ラジアンのとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問に答えよ.
\img{72_2151_2013_1}{60}


(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{2r}{R} \cdot \frac{3}{2}\pi$において,$x(\theta)$が最小となるときの$\theta$の値を求めよ.
(3)$R=3,\ r=1$とする.$\theta>0$で点$\mathrm{P}$がはじめて$x$軸に到達したときの角$\theta_0$を求めよ.また,$0 \leqq \theta \leqq \theta_0$のとき,$y(\theta) \geqq 0$を示せ.
(4)$R=3,\ r=1$とする.$0 \leqq \theta \leqq \theta_0$における点$\mathrm{P}$の軌跡と$x$軸で囲まれた図形の面積を求めよ.
宮崎大学 国立 宮崎大学 2013年 第2問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
宮崎大学 国立 宮崎大学 2013年 第4問
$0<r<1$を満たす実数$r$について,座標平面上に,$2$点$\mathrm{P}_1(1,\ 0)$と$\mathrm{P}_2(1,\ r)$がある.これらから点$\mathrm{P}_{n+1}(x_{n+1},\ y_{n+1}) \ (n=2,\ 3,\ 4,\ \cdots)$を次の規則に従って定める.

点$\mathrm{P}_{n-1}$から点$\mathrm{P}_n$に向かう方向を時計の針の回転と逆の向きに${90}^\circ$回転し,その方向に点$\mathrm{P}_n$から距離$r^n$だけ進んだ点を$\mathrm{P}_{n+1}$とする.

このとき,次の各問に答えよ.

(1)点$\mathrm{P}_4,\ \mathrm{P}_8$の座標を,$r$を用いて表せ.
(2)$\displaystyle x=\lim_{m \to \infty}x_{4m}$,$\displaystyle y=\lim_{m \to \infty}y_{4m}$とするとき,点$\mathrm{P}(x,\ y)$の座標を,$r$を用いて表せ.
(3)実数$r$が$0<r<1$の範囲を動くとき,$(2)$の点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
スポンサーリンク

「時計」とは・・・

 まだこのタグの説明は執筆されていません。