タグ「方程式」の検索結果

97ページ目:全1641問中961問~970問を表示)
岡山県立大学 公立 岡山県立大学 2013年 第2問
放物線$C:y=x^2$上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$がある.ただし,$a<b$とする.放物線$C$と線分$\mathrm{AB}$が囲む部分の面積を$S$とする.次の問いに答えよ.

(1)$\displaystyle S=\frac{(b-a)^3}{6}$であることを示せ.
(2)$2$点$\mathrm{A},\ \mathrm{B}$を固定する.放物線$C$上の点$\mathrm{P}(t,\ t^2)$に対して,放物線$C$と線分$\mathrm{AP}$が囲む部分の面積を$S_1$,放物線$C$と線分$\mathrm{BP}$が囲む部分の面積を$S_2$とする.$a<t<b$のとき,$S_1+S_2$の最小値を求めよ.
(3)常に$\displaystyle S=\frac{9}{2}$であるように,$2$点$\mathrm{A},\ \mathrm{B}$が放物線$C$上を動く.このとき,線分$\mathrm{AB}$の中点の軌跡の方程式を求めよ.
岡山県立大学 公立 岡山県立大学 2013年 第3問
次の問いに答えよ.

(1)$\displaystyle \sum_{k=1}^{2013} \frac{1}{\sum_{j=1}^k j}$を求めよ.
(2)実数$a,\ b$を係数とする$2$次方程式$x^2+ax+b=0$が異なる$2$つの虚数解をもつ.$1$つの虚数解を$\alpha$とすると,他の解は$2 \alpha-4+3i$と表すことができる.このとき,$a,\ b$の値を求めよ.ただし,$i$は虚数単位である.
(3)座標平面上を運動する点$\mathrm{P}$の時刻$t$における座標$(x,\ y)$が
\[ x=\cos 2t,\quad y=\sin t \]
で表されるとき,点$\mathrm{P}$の速さは
\[ v=\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \]
である.次の問いに答えよ.

(i) $v^2$を$\cos t$で表せ.
(ii) $v$の最大値を求めよ.
愛知県立大学 公立 愛知県立大学 2013年 第3問
$a$を$a>2$を満たす実数とし,
\[ f(t)=\frac{\sin^2 at+t^2}{at \sin at},\quad g(t)=\frac{\sin^2 at-t^2}{at \sin at} \quad \left( 0<|t|<\frac{\pi}{2a} \right) \]
とする.また,$C$を曲線$\displaystyle x^2-y^2=\frac{4}{a^2} \left( x \geqq \frac{2}{a} \right)$とする.このとき,以下の問いに答えよ.

(1)点$(f(t),\ g(t))$は,曲線$C$上の点であることを示せ.
(2)点$\displaystyle \left( \lim_{t \to 0}f(t),\ \lim_{t \to 0}g(t) \right)$における曲線$C$の法線の方程式を求めよ.
(3)曲線$C$と(2)で求めた法線および$x$軸とで囲まれた部分を,$x$軸のまわりに$1$回転させてできる回転体の体積を$V(a)$とする.$V(a)$を$a$を用いて表せ.また,$\displaystyle \lim_{a \to \infty}V(a)$を求めよ.
兵庫県立大学 公立 兵庫県立大学 2013年 第1問
次の問に答えなさい.

(1)$2$つの変数$x,\ y$をもつ関数$f(x,\ y)$を$\displaystyle f(x,\ y)=\frac{x+y}{2}+\frac{|x-y|}{2}$と定める.$x,\ y$が実数の値であるとき,$f(x,\ y)=x$は$x \geqq y$であるための必要十分条件であることを示しなさい.
(2)方程式$x^2+y^2-1+|x^2+y^2-1|=0$を満たす点$(x,\ y)$全体の集合を図示しなさい.
大阪市立大学 公立 大阪市立大学 2013年 第1問
放物線$C_1:y=2x^2$と放物線$C_2:y=(x-a)^2+b$を考える.ただし,$a,\ b$は定数で,$a>0$とする.放物線$C_1$と$C_2$がともにある点$\mathrm{P}$を通り,点$\mathrm{P}$において共通の接線$\ell$をもつとする.また,点$\mathrm{P}$で$\ell$と直交する直線を$m$とし,$m$と放物線$C_1$,$C_2$との$\mathrm{P}$以外の交点を,それぞれ$\mathrm{Q}$,$\mathrm{R}$とする.次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)直線$m$の方程式,および,点$\mathrm{Q}$,点$\mathrm{R}$の$x$座標を$a$を用いて表せ.
(3)$\displaystyle a=\frac{1}{4}$のとき,放物線$C_1$と直線$m$で囲まれた部分の面積$S$を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第2問
行列$\left( \begin{array}{rr}
-2 & 1 \\
4 & -2
\end{array} \right)$が表す移動により,座標平面上の点$\mathrm{P}$は点$\mathrm{Q}$に移るとする.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$が座標平面全体の上を動くとき,点$\mathrm{Q}$は図形$F_1$全体の上を動くという.図形$F_1$を表す方程式を求めよ.
(2)$k$を実数とする.点$\mathrm{P}$が直線$y=kx+1$全体の上を動くとき,点$\mathrm{Q}$は図形$F_2$全体の上を動くという.図形$F_2$を求めよ.
広島市立大学 公立 広島市立大学 2013年 第4問
曲線$y=e^{2x}$を$C$とする.$C$の接線で原点を通るものを$\ell_1$とし,$C$と$\ell_1$の接点$\mathrm{P}$における$C$の法線を$\ell_2$とする.以下の問いに答えよ.

(1)直線$\ell_1$の方程式,および点$\mathrm{P}$の座標を求めよ.
(2)直線$\ell_2$の方程式,および直線$\ell_2$と$y$軸の交点$\mathrm{Q}$の座標を求めよ.
(3)次の問いに答えよ.

(i) 部分積分法を用いて不定積分$\displaystyle \int \log x \, dx$,$\displaystyle \int (\log x)^2 \, dx$を求めよ.
(ii) 曲線$C$,直線$\ell_2$および$y$軸で囲まれる領域を$y$軸のまわりに$1$回転して得られる立体の体積を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第3問
$2$つの曲線$C_1:y=\log x$および$C_2:y=\sqrt{ax}$を考える.ただし,$a$は正の定数である.このとき,以下の問いに答えよ.

(1)曲線$C_1$上の点$(t,\ \log t)$における接線$\ell_1$の方程式,および曲線$C_2$上の点$(s,\ \sqrt{as})$における接線$\ell_2$の方程式を求めよ.ただし,$t>0,\ s>0$である.
(2)曲線$C_1$と曲線$C_2$の両方に接する直線が存在しないための$a$の値の範囲を求めよ.
九州歯科大学 公立 九州歯科大学 2013年 第1問
次の問いに答えよ.

(1)頂点間の距離が$24$であり,焦点が$(20,\ 0)$と$(-20,\ 0)$である双曲線の方程式を求めよ.
(2)初項を$a_1=4$とする数列$\{a_n\}$と初項を$b_1=1$とする数列$\{b_n\}$に対して,$c_n=\sqrt{a_nb_n}$,$\displaystyle d_n=\sqrt{\displaystyle\frac{a_n}{b_n}}$とおく.ただし,$a_n>0$,$b_n>0$とする.数列$\{c_n\}$が公差$2$の等差数列となり,数列$\{d_n\}$が公比$3$の等比数列となるとき,$a_5$と$b_5$の値を求めよ.
(3)関数$f(x)=Ax^5+Bx^4+Cx^3+Dx^2+Ex+F$が
\[ f(-x)=-f(x),\quad \lim_{x \to \infty}\frac{f(x)}{x^3}=6,\quad \int_0^1 f(x) \, dx=\frac{1}{2} \]
をみたすとき,定数$A,\ B,\ C,\ D,\ E,\ F$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第4問
以下の問いに答えよ.

(1)$a,\ c$を実数の定数とする.$a>0$のとき,方程式$2x^3-3ax^2=c$の相異なる実数解の個数を求めよ.
(2)$3$次関数$y=x^3-3x$のグラフを$G$とする.$x$座標が正である座標平面上の点$\mathrm{P}(a,\ b)$を通る$G$の接線が$3$本存在するための,$a,\ b$の条件を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。