タグ「方程式」の検索結果

94ページ目:全1641問中931問~940問を表示)
桜美林大学 私立 桜美林大学 2013年 第1問
次の問いに答えよ.

(1)$x$についての不等式$\displaystyle \frac{2x-a}{3}<\frac{x-3}{2}$をみたす最大の整数が$3$となるような実数の定数$a$がとり得る値の範囲を次の$①$~$⑤$から選ぶと$[ア]$である.
\[ ① 6<a \quad ② 6 \leqq a \quad ③ 6<a<\frac{13}{2} \quad ④ 6 \leqq a<\frac{13}{2} \quad ⑤ 6<a \leqq \frac{13}{2} \]
(2)$1000$以下の自然数で,$3$または$5$で割りきれる数は$[イ][ウ][エ]$個であり,そのうち偶数でないものは$[オ][カ][キ]$個ある.
(3)$2$つの方程式$x^2-2ax+2a^2+a-2=0$と$x^2+(2a+2)x-a+1=0$がともに実数解をもつような定数$a$の値の範囲は$[ク] \leqq a \leqq [ケ]$である.
(4)$0 \leqq x \leqq \pi$とする.関数$y=4 \sin x+3 \cos x$の最小値は$[コ]$であり,$y$の最大値を与える$x$の値を$\theta$とすると,$\displaystyle \sin 2\theta=\frac{[サ][シ]}{[ス][セ]}$である.
(5)$x$の関数$f(x)$が$\displaystyle f(x)=\int_0^1 xtf(t) \, dt+2$を満たすとき,$\displaystyle f(x)=\frac{[ソ]}{[タ]}x+[チ]$である.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
広島工業大学 私立 広島工業大学 2013年 第1問
次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{a}$,$\overrightarrow{b}$において,$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=3$,$|\overrightarrow{a}-2 \overrightarrow{b}|=7$とする.このとき,$|2 \overrightarrow{a}+\overrightarrow{b}|$を求めよ.
(2)方程式$\displaystyle 2 \cos^2 (x+\pi)+\sin \left( x+\frac{\pi}{2} \right)-1=0$を解け.ただし,$0 \leqq x<2\pi$とする.
(3)$\displaystyle \frac{7}{2},\ \log_2 11,\ \frac{3}{2} \log_25$を小さい順に並べよ.
大阪工業大学 私立 大阪工業大学 2013年 第4問
関数$f(x)=\log x$について,次の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線$\ell_1$が原点$\mathrm{O}$を通るとき,$a$の値を求めよ.
(2)$a$を$(1)$で求めた値とするとき,曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における法線$\ell_2$の方程式を求めよ.
(3)部分積分法を用いて,$\displaystyle \int \log x \, dx$を計算せよ.
(4)$(2)$で求めた法線$\ell_2$と曲線$y=\log x$および$x$軸で囲まれた図形の面積$S$を求めよ.
成城大学 私立 成城大学 2013年 第1問
$3$次方程式
\[ x^3-3x^2-a=0 \]
の異なる実数解の個数を求めよ.ただし,$a$は実数の定数とする.
成城大学 私立 成城大学 2013年 第1問
$x$の方程式$kx^2+4(k-1)x+k+5=0$が次の条件を満たすとき,実数の定数$k$の値の範囲をそれぞれ求めよ.

(1)正の解と負の解をもつ.
(2)異なる$2$つの正の解をもつ.
玉川大学 私立 玉川大学 2013年 第1問
次の$[ ]$を埋めよ.

(1)初項$1$,公比$2$の等比数列の初項から第$10$項までの和は$\kakkofour{ア}{イ}{ウ}{エ}$である.
(2)直線$x+2y+3=0$に垂直で点$(1,\ 3)$を通る直線の傾きを$m$,$y$切片を$b$とするとき
\[ m=[オ],\quad b=[カ] \]
である.
(3)$2$次方程式$3x^2-(3 \sqrt{2}+2)x+3 \sqrt{2}-1=0$の解は
\[ x=[キ],\quad \frac{[ク] \sqrt{[ケ]}-[コ]}{[サ]} \]
である.
(4)不等式$|2x-5| \leqq 4$の解は
\[ \frac{[シ]}{[ス]} \leqq x \leqq \frac{[セ]}{[ソ]} \]
である.
(5)曲線$y=x^3$の$x=2$における接線は,$y=[タチ]x-[ツテ]$である.
(6)$\overrightarrow{a}=(2,\ 0)$,$\overrightarrow{b}=(1,\ 1)$のとき,
\[ |\overrightarrow{a}|=[ト],\quad |\overrightarrow{b}|=\sqrt{[ナ]},\quad \overrightarrow{a} \cdot \overrightarrow{b}=[ニ] \]
である.
玉川大学 私立 玉川大学 2013年 第3問
曲線$y=x^2$について以下の問いに答えよ.ただし,$m \neq 0$とする.

(1)傾きが$m$の接線の方程式を求めよ.
(2)傾きが$\displaystyle -\frac{1}{m}$の接線の方程式を求めよ.
(3)$(1)$の接線と$(2)$の接線の交点を求めよ.
(4)$m$が$0$以外の実数値をとって変化するとき,$(3)$で求めた交点の軌跡を求めよ.
玉川大学 私立 玉川大学 2013年 第2問
次の$[ ]$を埋めよ.

(1)方程式$9 \sin x-2 \cos^2 x-3=0 (0<x<\pi)$は
\[ [ア] \sin^2 x+[イ] \sin x-[ウ]=0 \]
となるから,解は$\displaystyle x=\frac{[エ]}{[オ]}\pi,\ \frac{[カ]}{[キ]}\pi$である.
(2)$a>0$,$b>0$のとき,$\displaystyle a+\frac{1}{a}$の最小値は$[ク]$で,$\displaystyle \left( a+\frac{2}{b} \right) \left( b+\frac{8}{a} \right)$の最小値は$[ケコ]$である.
(3)同じ大きさの白玉$6$個と赤玉$4$個が袋の中に入っている.この袋の中から同時に$3$個の玉をとりだして目印をつけてから袋にもどし,再び袋の中から$1$個の玉をとりだす.$2$回目にとりだされた玉が目印のついた白玉である確率は
\[ \frac{[サ]}{[シス]} \]
である.
(4)実数$x,\ y$が$x^2+y^2=1$を満たすとき,$2x+3y$の最大値は$\sqrt{[セソ]}$である.
(5)$x^{99}+x^{49}+1$を$x^2-1$で割った余りは,$[タ]x+[チ]$である.
(6)$2$つの方程式
\[ \left\{ \begin{array}{l}
2x^2+(2a+5)x+5a=0 \\
2x^2+3ax+16=0
\end{array} \right. \]
が共通の解をもてば,$a=[ツテ]$または$\displaystyle a=\frac{[トナ]}{[ニ]}$である.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。