タグ「方程式」の検索結果

93ページ目:全1641問中921問~930問を表示)
近畿大学 私立 近畿大学 2013年 第3問
定義域を$0 \leqq x \leqq 2\pi$とする関数$f(x)=|\sin 2x-2 \sin x-2 \cos x+1|$がある.$t=\sin x+\cos x$とおき,$f(x)$を$t$で表した関数を$g(t)$とおく.

(1)関数$g(t)$を求めよ.
(2)$t$が取りうる値の範囲を求めよ.
(3)$f(x)$が取りうる値の範囲を求めよ.
(4)方程式$f(x)=k$の異なる実数解の個数$l$を$k$の値で場合分けして求めよ.
杏林大学 私立 杏林大学 2013年 第3問
$x \geqq 1$の実数$x$に対し,方程式
\[ f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t} \, dt \]
を満たす関数$f(x)$について,以下の問いに答えよ.

(1)$\displaystyle \int_1^e \frac{(\log_e t)^2}{t} \, dt=\frac{[ア]}{[イ]}$であることに注意すると,
\[ f(x)=(\log_e x)^2-\frac{[ウ]}{[エ]} \]
となる.また,曲線$y=f(x)$の変曲点の$y$座標の値は$\displaystyle \frac{[オ]}{[カ]}$である.
(2)点$(e,\ f(e))$における$y=f(x)$の接線の方程式は
\[ y=[キ] e^{[クケ]} x-\frac{[コ]}{[サ]} \]
である.この接線と曲線$y=f(x)$および直線$x=1$で囲まれた図形の面積は
\[ [シス]+\frac{1}{e} \left( [セ]+e^{[ソ]} \right) \]
である.
大阪薬科大学 私立 大阪薬科大学 2013年 第1問
次の問いに答えなさい.

(1)$2$次方程式$x^2+x+p=0$の$2$解$\alpha,\ \beta$に対して$\alpha^2-\beta^2=3$となるとき,$p=[ ]$である.
(2)$xy$座標平面上で,$x$座標と$y$座標がいずれも整数である点を格子点という.$x \geqq 0$,$y \geqq 0$,$x+2y \leqq 100$を同時に満たす格子点の個数は$[ ]$である.
(3)関数$f(x)=a(\log_3 x)^2+\log_9 bx$が,$\displaystyle x=\frac{1}{3}$で最小値$\displaystyle \frac{1}{4}$をとるとき,$(a,\ b)=[ ]$である.
(4)関数$\displaystyle y=2 \sin \left( 2x+\frac{\pi}{2} \right)$のグラフを描きなさい.
(5)表と裏が等確率で出るコインを$n$回投げ,表が出る回数が$0$回ならば$0$点,$1$回ならば$x$点,$2$回以上ならば$y$点とするゲームを考え,その点数の期待値を$E_n$とする.$n \geqq 2$の$n$に対して,不等式$E_n \geqq y$が$n$によらずに成り立つとき,$x$と$y$の間の関係を調べなさい.ただし,$x$と$y$は正とする.
大阪薬科大学 私立 大阪薬科大学 2013年 第3問
次の問いに答えなさい.

$xy$座標平面上に$3$点$\mathrm{P}(-\sqrt{3},\ 0)$,$\mathrm{Q}(0,\ 3)$,$\mathrm{R}(\sqrt{3},\ 0)$がある.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る放物線を$C$とし,また同じ$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円を$D$とする.

(1)$C$の方程式を$y=f(x)$とするとき,$f(x)=[ ]$である.
(2)$D$は,中心の座標が$[ ]$,半径が$[ ]$である.
(3)$D$の内部で$y \geqq f(x)$を満たす部分の面積は$[ ]$である.
(4)$C$の接線$\ell$が$D$の接線でもあるとき,$\ell$の方程式を求めなさい.
(5)$C$を$y$軸方向に$p$だけ平行移動した曲線が$D$と共通点をもつとき,$p$は$[ ]$の範囲にある.
近畿大学 私立 近畿大学 2013年 第1問
次の問いに答えよ.

(1)$x$についての$2$次式$P(x)$を$x+1$で割ると,商が$x-a$であり,余りが$b$であるとする.ただし,$b$は$0$ではないとする.

(i) $2$次方程式$P(x)=0$が異なる$2$つの実数解をもつための必要十分条件は,
$(a+[ア])^2>[イ]b$である.
(ii) $P(a)=P(-a)$を満たす$a$の値は$2$つあり,小さい順に,$[ウ]$,$[エ]$である.
(iii) $P(a+b)=P(a-b)$を満たすとき,$a=[オカ]$である.

(2)袋の中に赤玉$3$個,白玉$4$個が入っている.この袋から玉を$1$個取り出し,それを戻すと同時に,その玉と同じ色の玉を$1$個加える.このような操作を$3$回繰り返す.操作が終わったときに,袋の中の赤玉と白玉が同数になっている確率は,$\displaystyle \frac{[キ]}{[ク]}$であり,白玉が赤玉より$2$個多くなっている確率は,$\displaystyle \frac{[ケ]}{[コサ]}$である.
近畿大学 私立 近畿大学 2013年 第1問
次の問いに答えよ.

(1)$x$についての$2$次式$P(x)$を$x+1$で割ると,商が$x-a$であり,余りが$b$であるとする.ただし,$b$は$0$ではないとする.

(i) $2$次方程式$P(x)=0$が異なる$2$つの実数解をもつための必要十分条件は,
$(a+[ア])^2>[イ]b$である.
(ii) $P(a)=P(-a)$を満たす$a$の値は$2$つあり,小さい順に,$[ウ]$,$[エ]$である.
(iii) $P(a+b)=P(a-b)$を満たすとき,$a=[オカ]$である.

(2)袋の中に赤玉$3$個,白玉$4$個が入っている.この袋から玉を$1$個取り出し,それを戻すと同時に,その玉と同じ色の玉を$1$個加える.このような操作を$3$回繰り返す.操作が終わったときに,袋の中の赤玉と白玉が同数になっている確率は,$\displaystyle \frac{[キ]}{[ク]}$であり,白玉が赤玉より$2$個多くなっている確率は,$\displaystyle \frac{[ケ]}{[コサ]}$である.
東京都市大学 私立 東京都市大学 2013年 第2問
$\displaystyle y=\frac{1}{2}x^2$で表される放物線$P$と,$x^2+(y-k)^2=r^2 (r>0)$で表される円$Q$がある.放物線$P$上に点$\displaystyle \mathrm{A} \left( 1,\ \frac{1}{2} \right)$をとるとき,次の問いに答えよ.

(1)点$\mathrm{A}$における放物線$P$の接線$\ell$の方程式を求めよ.
(2)直線$\ell$が点$\mathrm{A}$で円$Q$に接するとき,$k$と$r$の値を求めよ.
(3)$(2)$で求めた$k$と$r$において,次の連立不等式が表す領域の面積を求めよ.
\setstretch{2}
\[ \left\{ \begin{array}{l}
y \geqq \displaystyle\frac{1}{2}x^2 \\
x^2+(y-k)^2 \geqq r^2 \\
y \leqq \displaystyle\frac{1}{2}
\end{array} \right. \]
\setstretch{1.4}
九州産業大学 私立 九州産業大学 2013年 第1問
次の問いに答えよ.

(1)$3+\sqrt{2}$の小数部分を$a$とするとき,次の計算をせよ.

(i) $\displaystyle a+\frac{1}{a}=[ア] \sqrt{[イ]}$である.
(ii) $\displaystyle a^3-\frac{1}{a^3}=[ウエオ]$である.

(2)方程式$8 \cdot 4^x-129 \cdot 2^x+16=0$の解は$x=[カキ]$と$x=[ク]$である.
(3)$3$点$(0,\ 0)$,$(\cos {30}^\circ,\ \sin {30}^\circ)$,$(\sqrt{2} \cos \alpha,\ \sqrt{2} \sin \alpha)$を頂点とする三角形の面積が$\displaystyle \frac{1}{2}$であるとき$\alpha$の値は$[ケコ]^\circ$である.ただし${30}^\circ<\alpha \leqq {90}^\circ$とする.
(4)点$\mathrm{P}$が$xy$平面の原点$\mathrm{O}$にある.コインを投げ,表が出たならば点$\mathrm{P}$を$x$軸方向に$1$だけ動かし,裏が出たならば点$\mathrm{P}$を$y$軸方向に$1$だけ動かす.コインを$5$回投げたときの点$\mathrm{P}$の座標を$(x,\ y)$とする.

(i) $x$の最大値は$[サ]$,最小値は$[シ]$である.
(ii) $(x,\ y)=(2,\ 3)$となる場合の数は$[スセ]$通りである.

(iii) $(x,\ y)=(2,\ 3)$となる確率は$\displaystyle \frac{[ソ]}{[タチ]}$である.
桜美林大学 私立 桜美林大学 2013年 第2問
座標平面上に$3$直線$\ell_1:x+5y-5=0$,$\ell_2:2x-3y+3=0$,$\ell_3:5x-y-25=0$がある.

(1)$\ell_1$と$\ell_2$,$\ell_2$と$\ell_3$,$\ell_3$と$\ell_1$の交点を順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.それぞれの交点の座標は$\mathrm{A}([ツ],\ [テ])$,$\mathrm{B}([ト],\ [ナ])$,$\mathrm{C}([ニ],\ [ヌ])$である.
(2)三角形$\mathrm{ABC}$の面積は$[ネ][ノ]$である.
(3)点$\mathrm{A}$を通る直線$m$が三角形$\mathrm{ABC}$の面積を$2$等分するとき,$m$の方程式は,$3x+[ハ][ヒ]y+[フ][ヘ]=0$である.
大阪工業大学 私立 大阪工業大学 2013年 第4問
$2$つの放物線$C_1:y=x^2-2x-a$と$C_2:y=-x^2-2x+a$について,次の問いに答えよ.ただし,$a>0$とする.

(1)$C_1$と$C_2$の$2$つの共有点を通る直線$\ell$の方程式を求めよ.
(2)$C_1$と直線$\ell$で囲まれた図形の面積$S$を$a$を用いて表せ.
(3)$\displaystyle S=\frac{9}{2}$となるとき,$a$の値を定めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。