タグ「方程式」の検索結果

91ページ目:全1641問中901問~910問を表示)
北里大学 私立 北里大学 2013年 第1問
$2$つの関数$f(x)=x^3-6x^2+9x+1$と$g(x)=|-x^2+6x-3|-2$がある.

(1)関数$f(x)$は,極大値$[ア]$,極小値$[イ]$をとる.
(2)関数$y=g(x)$のグラフと直線$x+y=k$が異なる$4$個の共有点をもつ.このとき,実数$k$のとり得る値の範囲は,$[ウ]<k<[エ]$である.
(3)方程式$f(x)=g(x)$の解のうち,最小のものは$x=[オ]$であり,最大のものは$x=[カ]$である.
北里大学 私立 北里大学 2013年 第2問
$a,\ b$を$a<b$を満たす実数とし,$f(x)=x^2+3$とおく.$2$次関数$y=f(x)$のグラフ上の点$\mathrm{P}(a,\ f(a))$における接線を$\ell$,点$\mathrm{Q}(b,\ f(b))$における接線を$m$とするとき,直線$\ell$と$m$は原点で交わっているものとする.

(1)点$\mathrm{P}$で直線$\ell$と接し,点$\mathrm{Q}$で直線$m$と接する円の方程式は
\[ x^2+(y-[キ])^2=[ク] \]
である.
(2)点$\mathrm{P}$で直線$\ell$と垂直に交わる直線と点$\mathrm{Q}$で直線$m$と垂直に交わる直線の交点を$\mathrm{R}$とする.このとき,線分$\mathrm{PR}$と線分$\mathrm{QR}$および放物線$y=f(x)$で囲まれた図形の面積は$[ケ]$である.
北里大学 私立 北里大学 2013年 第2問
次の文中の$[ア]$~$[ホ]$にあてはまる最も適切な数を答えなさい.

放物線$y=-x^2+1$を$C_1$,また$y=(x-t)^2+kt+1$を$C_2$とする.ここで$k>0$とし,$t$は任意の実数値をとるものとする.$t$の値が変化するに従い,$C_2$の頂点の軌跡はある直線になる.この直線を$L$とする.

(1)$k=1$の場合を考える.このとき,直線$L$の方程式は,$y=[ア]x+[イ]$である.また$C_1$および$L$によって囲まれた部分の面積は$\displaystyle \frac{[ウ]}{[エ]}$である.
(2)$\displaystyle k=\frac{1}{2}$の場合を考える.$C_1$と$C_2$がただ$1$つの点で接する場合,接点の座標は
\[ (x,\ y)=([オ],\ [カ]) \]
および
\[ (x,\ y)=\left( \frac{[キ]}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.
$C_1$と$C_2$が$2$つの共有点をもつのは,$[サ]<t<[シ]$のときである.このとき,それらの$x$座標を$\alpha,\ \beta (\alpha<\beta)$とすれば,
\[ \alpha+\beta=[ス]t+[セ],\quad \alpha\beta=\frac{[ソ]}{[タ]}t^2+\frac{[チ]}{[ツ]}t+[テ] \]
である.また,$C_1$と$C_2$によって囲まれた部分の面積$S(t)$は,
\[ S(t)=\frac{1}{[ト]} ([ナ]t^2+[ニ]t+[ヌ])^p,\quad \text{ただし} p=\frac{[ネ]}{[ノ]} \]
である.この面積は$\displaystyle t=\frac{[ハ]}{[ヒ]}$のとき最大値$\displaystyle \frac{[フ]}{[ヘ][ホ]}$をとる.
北里大学 私立 北里大学 2013年 第2問
$f(x)=x^3-x^2+12$とおく.原点を通り,曲線$y=f(x)$に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)曲線$y=f(x)$と直線$\ell$との接点以外の共有点の座標を求めよ.
(3)曲線$y=f(x)$と直線$\ell$との共有点を$\mathrm{P}(a,\ f(a))$,$\mathrm{Q}(b,\ f(b)) (a<b)$とする.曲線$y=f(x)$上の点$\mathrm{R}(c,\ f(c))$が$a<c<b$を満たしながら動くとき,三角形$\mathrm{PQR}$の面積が最大となるような$c$の値を求めよ.
東京薬科大学 私立 東京薬科大学 2013年 第1問
次の$[ ]$に適当な数,式を入れよ.ただし,$*$については,$+,\ -$の$1$つが入る.

(1)$2$次方程式$x^2-4x+2=0$の$2$つの解を$\alpha,\ \beta (\alpha>\beta)$とすると,
\[ \alpha^2+\beta^2=[アイ],\quad \alpha^2-\beta^2=[ウ] \sqrt{[エ]},\quad \alpha^3+\beta^3=[オカ] \]
である.
(2)$\displaystyle \left( \frac{5}{2} \right)^{100}$の整数部分の桁数は$[キク]$である.ただし,$\log_{10}2=0.3010$とせよ.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする.$\displaystyle S_n=\frac{3}{2}n^2-\frac{5}{2}n$であるとき,$a_n=[$*$ケ]n+[$*$コ]$である.
(4)$1$枚の硬貨を$5$回投げるとき,表が$3$回出る確率は$\displaystyle \frac{[サ]}{[シス]}$であり,$3$度目の表が$5$回目の試行で出る確率は$\displaystyle \frac{[セ]}{[ソタ]}$である.
東京薬科大学 私立 東京薬科大学 2013年 第3問
$k$を実数の定数とする.$x$の方程式
\[ (\log_2x)^2-\log_2x^5+k=0 \cdots\cdots (*) \]
がある.

(1)$t=\log_2x$とおくとき,$(*)$を$t$の式で表すと,
\[ [ホ]t^2+[$*$マ]t+k=0 \]
となる.
(2)$k=4$のとき$(*)$の解は$x=[ミ],\ [ムメ]$である.
(3)$(*)$が二つの異なる実数解をもつための$k$の範囲は,$\displaystyle k<\frac{[モヤ]}{[ユ]}$である.
(4)$(3)$の下で,$(*)$の二つの解$\alpha,\ \beta (\alpha<\beta)$が$\beta=4 \alpha$という関係にあるなら,$\alpha=[ヨ] \sqrt{[ラ]}$となる.
松山大学 私立 松山大学 2013年 第4問
座標平面上において,$2$点$\mathrm{A}(-2,\ 5)$,$\mathrm{B}(7,\ -1)$を通る直線を$\ell$とする.また,点$\mathrm{P}$は放物線$y=-3x^2$上を動く.

(1)線分$\mathrm{AB}$の長さは$[ア] \sqrt{[イウ]}$である.

(2)直線$\ell$の方程式は$\displaystyle y=-\frac{[エ]}{[オ]}x+\frac{[カキ]}{[ク]}$である.

(3)$\triangle \mathrm{ABP}$の面積の最小値は$\displaystyle \frac{[ケコ]}{[サ]}$であり,このとき点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[シ]}{[ス]},\ \frac{[セソ]}{[タチ]} \right)$である.
京都女子大学 私立 京都女子大学 2013年 第1問
次の各問に答えよ.

(1)方程式$x^2+3x+1=0$の$2$つの解を$a,\ b$とするとき,$a+b$,$a^2+b^2$および$a^3+b^3$の値を求めよ.
(2)$0^\circ<\theta<{45}^\circ$とする.$\displaystyle \sin \theta \cos \theta=\frac{3}{8}$のとき,$\sin \theta+\cos \theta$,$\sin \theta-\cos \theta$および$\tan \theta$を求めよ.
(3)$1$個のサイコロを投げて出た目が$1,\ 2$または$3$のときは$\mathrm{A}$の袋に,$4$または$5$のときは$\mathrm{B}$の袋に,$6$のときは$\mathrm{C}$の袋に球を$1$個入れる.この操作を$6$回おこなったとき,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に入っている球の個数をそれぞれ$a,\ b,\ c$とする.$a=0$である確率を求めよ.また,$a=b=c$である確率を求めよ.
同志社大学 私立 同志社大学 2013年 第4問
$xy$平面において,曲線$C:y=\log x$上に$2$点$\mathrm{A}(a,\ \log a)$と$\mathrm{B}(a+h,\ \log (a+h))$ $(h \neq 0)$をとる.点$\mathrm{A}$における$C$の法線と点$\mathrm{B}$における$C$の法線の交点を$\mathrm{D}(\alpha,\ \beta)$とする.次の問いに答えよ.

(1)点$\mathrm{A}$における法線の方程式を求めよ.
(2)$\alpha$と$\beta$をそれぞれ$a$と$h$を用いて表せ.
(3)$\displaystyle p=\lim_{h \to 0} \alpha$と$\displaystyle q=\lim_{h \to 0} \beta$とする.$p$と$q$をそれぞれ$a$を用いて表せ.
(4)点$\mathrm{E}$の座標を$(p,\ q)$とする.線分$\mathrm{AE}$の長さを最小にする$a$の値と,そのときの線分$\mathrm{AE}$の長さを求めよ.
星薬科大学 私立 星薬科大学 2013年 第1問
次の問に答えよ.

(1)連立方程式$2x+y-3=0$,$ax-y+2a-7=0$が$x>0$,$y>0$となる解をもつとき,$a$がとりえる値の範囲は$[ ]<a<[ ]$である.
(2)$x$の$2$次方程式$(k^2-1)x^2-x+1=0$が正の$2$つの解$\alpha,\ \beta$をもち,かつ$k \alpha\beta=2 \alpha-\beta$を満たすとき,$\displaystyle k=\frac{[][]}{[][]}$,$\displaystyle \alpha=\frac{[][]}{[ ]}$,$\displaystyle \beta=\frac{[][]}{[ ]}$である.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。