タグ「方程式」の検索結果

87ページ目:全1641問中861問~870問を表示)
西南学院大学 私立 西南学院大学 2013年 第1問
以下の問に答えよ.

(1)$a,\ b,\ c$を実数とする.$3$次方程式$x^3+ax^2+bx+c=0$が$x=3$を解にもつとき,
\[ x^3+ax^2+bx+c=(x-3) \left\{ x^2+(a+[ア])x-\frac{[イ]}{[ウ]} c \right\} \]
である.
(2)$(a+3b):(b+3c):(c+3a)=1:2:3$であるとき,$a:b:c=[エオ]:[カ]:9$である.
(3)$3$次方程式$2x^3-6x^2+7x-6=0$の$3$つの解をそれぞれ$2$乗したものの和は,$[キ]$である.
名城大学 私立 名城大学 2013年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$\displaystyle x=\frac{\sqrt{2}+1}{\sqrt{2}-1},\ y=\frac{\sqrt{2}-1}{\sqrt{2}+1}$のとき,$x^2+y^2=[ア]$,$x^3+y^3=[イ]$である.
(2)放物線$y=x^2-2x+3$を$x$軸方向に$[ウ]$,$y$軸方向に$[エ]$だけ平行移動すると,放物線$y=x^2+4x+3$が得られる.
(3)$xy$平面上に,$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(3,\ 0)$を端点とする線分$\mathrm{OA}$と点$\mathrm{P}$がある.$\mathrm{P}$が$\mathrm{OP}:\mathrm{AP}=1:1$を満たしながら動くとき,$\mathrm{P}$の描く軌跡は直線であり,その方程式は$[オ]$である.また,$\mathrm{P}$が$\mathrm{OP}:\mathrm{AP}=1:2$を満たしながら動くとき,$\mathrm{P}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_1:y=x^2+2x$と放物線$C_2:y=-2x^2-10x$との$2$つの交点のうち,原点ではない交点の$x$座標を$x_0$とすると,$x_0=[キ]$である.$C_1$と$C_2$によって囲まれた部分の面積を$S_1$とし,$C_1$,$C_2$および直線$\ell:x=-5$によって囲まれた部分の面積を$S_2$とするとき,$S_1+S_2=[ク]$である.
西南学院大学 私立 西南学院大学 2013年 第3問
以下の問に答えよ.

(1)方程式$\displaystyle \log_2 (x+2)-\log_4 x=\frac{3}{2}$の解は,$x=[テ]$である.
(2)連立方程式
\[ \left\{ \begin{array}{l}
\log_7 (x+y)^x=4(x-y) \\
\log_7 (x+y)^y=3(x-y)
\end{array} \right. \]
の解は,$\displaystyle x=\frac{[ト]}{[ナ]},\ y=\frac{[ニ]}{[ヌ]}$または,$x=[ネ],\ y=[ノ]$である.
西南学院大学 私立 西南学院大学 2013年 第5問
関数$f(x)$を$f(x)=-x^3-3x^2+a$とし,$y=f(x)$で表されるグラフを$C$とする.$C$が極小となる点で$x$軸と接するとき,以下の問に答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求め,$f(x)$の極小値と極大値および$a$の値を求めよ.
(2)$C$と$x$軸の共有点のうち,$C$が極小とならない座標を求め,その点における$C$の接線$\ell$の方程式を求めよ.
(3)$y=3x^2-3$で表されるグラフを$D$とし,$D$と(2)で求めた$\ell$で囲まれる部分を$E$とする.$E$を$y$軸で$2$分割し,$x \geqq 0$の部分の面積と$x \leqq 0$の部分の面積を求めよ.
西南学院大学 私立 西南学院大学 2013年 第1問
以下の問に答えよ.

(1)連立方程式

\begin{spacing}{1.8}
$\left\{ \begin{array}{l}
\displaystyle \frac{x}{y}+\frac{y}{x}+\frac{13}{6}=0 \\
\displaystyle \frac{1}{6}xy+x+y=0
\end{array} \right.$
\end{spacing}
の解は,$([ア],\ -[イ])$あるいは$(-[ウ],\ [エ])$である.
(2)$a,\ b$を$0$以外の実数とする.$x$の方程式$x^3+(a-2b)x^2+(b-2ab)x-2b^2=0$の解の$1$つは$2b$である.この方程式が重解をもつとき,$\displaystyle b=\frac{a^2}{[オ]}$あるいは$\displaystyle b=-\frac{[カ]}{[キ]}a-\frac{[ク]}{[ケ]}$である.
西南学院大学 私立 西南学院大学 2013年 第1問
以下の問に答えよ.

(1)$\displaystyle \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}+1}$を変形すると,$\displaystyle \frac{\sqrt{6}+[ア] \sqrt{3}-[イ] \sqrt{2}-[ウ]}{4}$となる.
(2)$2$次方程式$x^2+3x+4=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^3,\ \beta^3$を$2$つの解とする$2$次方程式を求めると,$x^2-[エ]x+[オカ]=0$となる.
(3)$x>8$のとき$\displaystyle \frac{4x^2-4x-223}{2x-16}$の最小値は,$[キク]$である.
西南学院大学 私立 西南学院大学 2013年 第2問
$2$次方程式$kx^2+8kx+3k-9=0$が異なる$2$つの実数解$\alpha,\ \beta$をもつとき,以下の問に答えよ.

(1)$|\alpha-\beta|=8$のとき,$k=[コ]$となる.

(2)$8<|\alpha-\beta|<10$のとき,$\displaystyle \frac{[サ]}{[シ]}<k<[ス]$となる.
(3)$8<|\alpha-\beta|<10$を満たし,$|\alpha|+|\beta|$が整数になるとき,$\displaystyle k=\frac{[セソ]}{[タチ]}$となる.
京都産業大学 私立 京都産業大学 2013年 第3問
以下の$[ ]$にあてはまる式または数値を入れよ.

$a$を正の実数とし,$xy$平面上に放物線$C:y=ax^2$とその上の点$\mathrm{P}(p,\ ap^2)$とが与えられている.ただし,$p>0$とする.原点を$\mathrm{O}$とする.
(1)放物線$C$と$x$軸および直線$x=p$で囲まれた部分の面積を$S_1(p)$とすると,$S_1(p)=[ア]$である.
(2)放物線$C$の$\mathrm{P}$における接線$\ell_1$の方程式は$y=[イ]$である.
(3)$\mathrm{P}$を通り$\ell_1$に垂直な直線$\ell_2$の方程式は$y=[ウ]$であり,$\ell_2$と$x$軸との交点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[エ]$である.
(4)点$\mathrm{R}(0,\ 1)$とする.$\mathrm{OQ}$,$\mathrm{OR}$を$2$辺とする長方形の面積を$S_2(p)$とし,$f(p)=S_1(p)-S_2(p) (p>0)$とおく.関数$f(p)$が極値をもつような$a$の値の範囲は$[オ]$である.
(5)$\displaystyle a=\frac{1}{10}$のとき,$f(p)$の極値を求めて,さらに$f(p)$のグラフを描け.
京都産業大学 私立 京都産業大学 2013年 第3問
$xy$平面上の曲線$C_1:y=x \sin x$と,傾き$m$の直線$C_2:y=mx$について,次の問いに答えよ.

(1)点$(a,\ a \sin a)$における$C_1$の接線の方程式を求めよ.
(2)$C_1$と$C_2$が$0<x<\pi$の範囲で接する$m$の値を求めよ.
(3)$(2)$のとき,$C_1$を$0 \leqq x \leqq \pi$に制限した曲線と$C_2$とで囲まれた部分の面積を求めよ.
(4)$(3)$で得られた部分を,$x$軸のまわりに$1$回転して得られる立体の体積を求めよ.
龍谷大学 私立 龍谷大学 2013年 第1問
つぎの方程式を解きなさい.
\[ \log_{64}(x+1)+\log_8 (2-x)=\log_4 x \]
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。