タグ「方程式」の検索結果

77ページ目:全1641問中761問~770問を表示)
浜松医科大学 国立 浜松医科大学 2013年 第2問
$|k|<1$または$k>1$を満たす実数$k$に対し,次の$2$次曲線$C(k)$を考える.
\[ C(k):\frac{x^2}{k+1}+\frac{y^2}{k-1}=1 \]
以下の問いに答えよ.

(1)点$(1,\ 1)$を通る曲線$C(k)$をすべて求めて,その概形をかけ.
(2)曲線$C(3)$が点$(a,\ b) \ (a>0,\ b>0)$を通るとき,$a$と$b$の間に成り立つ関係式を求めよ.またこのとき,点$(a,\ b)$を通る曲線$C(k) \ (k \neq 3)$の方程式を,$b$を用いて表し,その焦点を求めよ.
(3)(2)の$2$つの曲線$C(3)$,$C(k)$について,点$(a,\ b)$における$C(3)$,$C(k)$の接線をそれぞれ$\ell_1$,$\ell_2$とする.$\ell_1$と$\ell_2$のなす角度を求めよ.
愛知教育大学 国立 愛知教育大学 2013年 第4問
曲線$y=x^2$を$C$とする.$C$上の点$\mathrm{A}(\alpha,\ \alpha^2) \ (\alpha<0)$における曲線$C$の接線を$\ell$とする.また,この接線$\ell$上の点$\mathrm{P}$から,曲線$C$に$\ell$とは異なる接線$m$をひく.ただし,点$\mathrm{P}$の$x$座標は$p$とし,$p>\alpha$とする.このとき,以下の問いに答えよ.

(1)接線$m$の曲線$C$との接点$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{A}$と点$\mathrm{B}$を通る直線が,直線$\ell$と垂直となるとき,点$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$を(2)で求めたものとする.このとき,点$\mathrm{P}$を通り,$\triangle \mathrm{ABP}$の面積を$2$等分する直線の方程式を求めよ.
浜松医科大学 国立 浜松医科大学 2013年 第1問
関数$\displaystyle f(x)=\log x+\frac{1}{x}$と曲線$C:y=f(x) \ (x>0)$について,以下の問いに答えよ.なお,必要ならば$\displaystyle \lim_{x \to \infty}\frac{\log x}{x}=0$を用いてもよい.

(1)$f(x)$の導関数$f^\prime(x)$と不定積分$\displaystyle \int f(x) \, dx$をそれぞれ求めよ.
(2)曲線$C$の変曲点を求めよ.
以下$a$は$1$より大きい実数とし,点$(a,\ f(a))$における$C$の接線を$\ell(a)$とする.
(3)接線$\ell(a)$の方程式を求めよ.また,$a \neq 2$のとき,曲線$C$と接線$\ell(a)$は$2$個の共有点(接点と交点)をもつことを示せ.
(4)$a=2$とする.曲線$C$,接線$\ell(2)$と$2$直線$x=1,\ x=4$で囲まれた図形の面積を求めよ.
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3-3x^2-px-1=0$が$2$重解$\displaystyle -\frac{1}{2}$をもつとき,他の解と実数$p$の値を求めよ.
(2)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$で表し,辺$\mathrm{BC}$,辺$\mathrm{CA}$,辺$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表すとき
\[ (a \sin A-b \sin B)\cos (A+B)=0 \]
ならば,$\triangle \mathrm{ABC}$はどのような三角形か.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3-3x^2-px-1=0$が$2$重解$\displaystyle -\frac{1}{2}$をもつとき,他の解と実数$p$の値を求めよ.
(2)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$で表し,辺$\mathrm{BC}$,辺$\mathrm{CA}$,辺$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表すとき
\[ (a \sin A-b \sin B)\cos (A+B)=0 \]
ならば,$\triangle \mathrm{ABC}$はどのような三角形か.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
岩手大学 国立 岩手大学 2013年 第2問
座標空間内に$2$点$\mathrm{A}(0,\ 3,\ 0)$,$\mathrm{B}(0,\ -3,\ 0)$を直径の両端とする球面$S$を考える.$S$上に点$\mathrm{P}(x,\ y,\ z)$をとり,$S$外に点$\mathrm{Q}(3,\ 4,\ 5)$をとる.このとき,以下の問いに答えよ.

(1)球面$S$の方程式を求めよ.
(2)ベクトル$\overrightarrow{\mathrm{AP}}$とベクトル$\overrightarrow{\mathrm{BP}}$の内積は,点$\mathrm{P}$が球面$S$上のどこにあっても必ず$0$になることを証明せよ.
(3)原点を$\mathrm{O}$で表すとき,ベクトル$\overrightarrow{\mathrm{OQ}}$の大きさとベクトル$\overrightarrow{\mathrm{OP}}$の大きさを求めよ.
(4)点$\mathrm{P}(x,\ y,\ z)$が球面$S$上を動くとき,$3x+4y+5z$の最大値を求めよ.また,そのときの$\mathrm{P}$の座標を求めよ.
宮城教育大学 国立 宮城教育大学 2013年 第1問
以下の問いに答えよ.

(1)$a>0,\ b>0$とする.$a \neq b$であるための必要十分条件は,
\[ \frac{a+b}{2}>\sqrt{ab} \]
であることを示せ.
(2)$a>0,\ b>0,\ a \neq b$とする.
\[ p=a+b-\sqrt{ab},\quad q=\frac{1}{a}+\frac{1}{b}-\frac{1}{\sqrt{ab}} \]
とおくとき,$pq>1$であることを示せ.ただし,必要があれば,(1)の結果を用いてよい.
(3)$a>0,\ b>0,\ ab>1$とする.$x$の$2$次方程式
\[ x^2-\left( a+\sqrt{\frac{a}{b}} \right)x+\frac{a}{b}=0 \]
は,相異なる$2$つの正の実数解をもつことを示せ.
宮城教育大学 国立 宮城教育大学 2013年 第4問
$2$曲線$\displaystyle C_1:y=\left( x-\frac{1}{2} \right)^2-\frac{1}{2}$,$\displaystyle C_2:y=\left( x-\frac{5}{2} \right)^2-\frac{5}{2}$の両方に接する直線を$\ell$とするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1,\ C_2$と直線$\ell$で囲まれた図形の面積$S$を求めよ.
秋田大学 国立 秋田大学 2013年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2-2ax+2a+3=0$が異なる$2$つの実数解をもち,その$2$つの実数解がともに$1$以上$5$以下であるように,定数$a$の値の範囲を定めよ.
(2)多項式$4x^4+7x^2+16$を因数分解せよ.
秋田大学 国立 秋田大学 2013年 第1問
円$x^2+y^2=1$を$C_1$とし,点$\mathrm{P}(0,\ -1)$を通り,傾きが$m$の直線を$\ell$とする.ただし,$m>1$である.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,$\mathrm{P}$と異なるものを$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.さらに,点$\mathrm{Q}$における円$C_1$の接線の方程式を求めよ.
(2)原点$\mathrm{O}$と点$\mathrm{P}$および(1)の点$\mathrm{Q}$の$3$点を通る円を$C_2$とする.$C_2$の方程式を求めよ.
(3)$m=\sqrt{3}$のとき,円$C_1$と(2)の円$C_2$の両方に接する直線の方程式を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。