タグ「方程式」の検索結果

7ページ目:全1641問中61問~70問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
関数$f(x)=x^2e^x (x>-3)$を考える.


(1)関数$y=f(x)$の極値を調べて,そのグラフをかけ.

(2)曲線$y=f(x)$上の点$(1,\ e)$における接線の方程式を求めよ.

(3)定積分$\displaystyle \int_0^1 xe^x \, dx$を求めよ.

(4)曲線$y=f(x)$と$(2)$で求めた接線と$x$軸とで囲まれた部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$f(x)=x^3+2x^2-x-2$とし,$\mathrm{O}$を原点とする座標平面上の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(t,\ f(t))$における$C$の接線を$\ell$とおく.$\ell$が$2$直線$x=-1$,$x=1$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)接線$\ell$の方程式を求めよ.
(2)$t$が$-1<t<1$の範囲を動くとき,三角形$\mathrm{OQR}$の面積を$S(t)$とおく.$S(t)$を$t$を用いて表せ.
(3)$(2)$の$S(t)$の最小値,およびそのときの$t$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$f(x)=x^3+2x^2-x-2$とし,$\mathrm{O}$を原点とする座標平面上の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(t,\ f(t))$における$C$の接線を$\ell$とおく.$\ell$が$2$直線$x=-1$,$x=1$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)接線$\ell$の方程式を求めよ.
(2)$t$が$-1<t<1$の範囲を動くとき,三角形$\mathrm{OQR}$の面積を$S(t)$とおく.$S(t)$を$t$を用いて表せ.
(3)$(2)$の$S(t)$の最小値,およびそのときの$t$の値を求めよ.
(4)$t<1$のとき,$\ell$と$C$が$t<s<1$を満たす点$\mathrm{U}(s,\ f(s))$で交わるような$t$の範囲を求めよ.またそのとき,線分$\mathrm{PU}$と$C$とで囲まれる部分の面積と,線分$\mathrm{UR}$と$C$と直線$x=1$とで囲まれる部分の面積が等しくなるような$t$の値を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第2問
次の各問いに答えよ.

(1)整式$P(x)$を$0$でない整式$Q(x)$で割った余りを$R(x)$とおく.方程式$P(x)=0$と$Q(x)=0$の共通解は方程式$Q(x)=0$と$R(x)=0$の共通解であることを示せ.また逆に方程式$Q(x)=0$と$R(x)=0$の共通解は方程式$P(x)=0$と$Q(x)=0$の共通解であることを示せ.
(2)整式$P(x),\ Q(x)$を
\[ P(x)=x^4+2x^3+x^2-1,\quad Q(x)=x^3+2x^2-1 \]
とおく.方程式$P(x)=0$と$Q(x)=0$の共通解をすべて求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第2問
次の各問いに答えよ.

(1)整式$P(x)$を$0$でない整式$Q(x)$で割った余りを$R(x)$とおく.方程式$P(x)=0$と$Q(x)=0$の共通解は方程式$Q(x)=0$と$R(x)=0$の共通解であることを示せ.また逆に方程式$Q(x)=0$と$R(x)=0$の共通解は方程式$P(x)=0$と$Q(x)=0$の共通解であることを示せ.
(2)整式$P(x),\ Q(x)$を
\[ P(x)=x^4+2x^3+x^2-1,\quad Q(x)=x^3+2x^2-1 \]
とおく.方程式$P(x)=0$と$Q(x)=0$の共通解をすべて求めよ.
九州工業大学 国立 九州工業大学 2016年 第3問
$a<0$,$b$を実数とする.楕円$C:x^2+4y^2=4$と直線$\ell:y=ax+b$が異なる$2$個の共有点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2) (x_1<x_2)$を持つとし,$\ell$に平行な直線$m$が第$1$象限の点$\mathrm{A}$において$C$と接しているとする.次に答えよ.

(1)$b$の値の範囲を$a$を用いて表せ.
(2)直線$m$の方程式を$a$を用いて表せ.
(3)$x_2-x_1$を$a,\ b$を用いて表せ.
(4)三角形$\mathrm{APQ}$の面積$S$を$a,\ b$を用いて表せ.
(5)$b$が$(1)$で求めた範囲を動くとき,$(4)$で求めた$S$の最大値を求めよ.
九州工業大学 国立 九州工業大学 2016年 第4問
点$\mathrm{A}(1,\ 0)$および点$\displaystyle \mathrm{P}(\sqrt{3} \cos \theta,\ \sqrt{3} \sin \theta) \left( 0<\theta<\frac{\pi}{4} \right)$がある.$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とし,$2$点$\mathrm{P}$,$\mathrm{A}$を通る直線を$\ell$,$2$点$\mathrm{O}$,$\mathrm{Q}$を通る直線を$m$とする.次に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\sqrt{3} \cos \theta>1$を示せ.
(2)直線$\ell$の方程式と直線$m$の方程式を$\theta$を用いて表せ.
(3)直線$\ell$と直線$m$の交点$\mathrm{R}$の座標を$\theta$を用いて表せ.
(4)三角形$\mathrm{PAQ}$の面積を$S$とする.$\theta$が変化するとき,$S$の最大値とそのときの$\theta$の値を求めよ.
(5)$\theta$が$(4)$で求めた値をとるとき,$2$直線$\ell,\ m$および曲線$x^2+y^2=3 (x \geqq \sqrt{3} \cos \theta)$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2016年 第1問
以下の問いに答えよ.

(1)放物線$y=x^2-x$の頂点を$\mathrm{P}$とする.点$\mathrm{Q}$はこの放物線上の点であり,原点$\mathrm{O}(0,\ 0)$とも点$\mathrm{P}$とも異なるとする.$\angle \mathrm{OPQ}$が直角であるとき,点$\mathrm{Q}$の座標を求めよ.
(2)関数$f(x)$は以下の条件(イ),(ロ),(ハ)を満たす.そのような正の数$a$の値と$f(x)$を求めよ.

(イ)$f^\prime(x)=x^2+ax$
(ロ)$f(0)=-1$
(ハ)$f(x)$の極大値と極小値の差が$\displaystyle \frac{4}{81}$

(3)方程式$2(\log_2 x)^2-7 |\log_2 x|-4=0$を解け.
(4)$0 \leqq x \leqq 2\pi$のとき,不等式$\sin 3x+\sin 2x<\sin x$を解け.
鹿児島大学 国立 鹿児島大学 2016年 第7問
次の各問いに答えよ.

(1)複素数$z,\ w$について,次の関係が成立することを示せ.ただし複素数$\alpha$に対し,$\overline{\alpha}$は$\alpha$と共役な複素数を表す.

(i) $\overline{z+w}=\overline{z}+\overline{w}$
(ii) $\overline{zw}=\overline{z} \ \overline{w}$

(2)方程式$z^2-z+1=0$の$2$つの解を$\alpha,\ \beta$とする.次の各問いに答えよ.

(i) $\alpha,\ \beta$を求めよ.さらにそれらを極形式で表せ.
(ii) $\alpha^{100}+\beta^{100}$を求めよ.
秋田大学 国立 秋田大学 2016年 第1問
$f(x)=\log_2 (x+1)+\log_2 (x-2)-2$,$g(x)=|x(x-2)|$とする.次の問いに答えよ.

(1)方程式$f(x)=0$を解け.
(2)関数$y=g(x)$のグラフの概形をかけ.
(3)曲線$y=f(x)$と$x$軸との交点の座標を$(a,\ 0)$とする.このとき,曲線$y=g(x) (-1 \leqq x \leqq a)$と$x$軸,および$2$直線$x=-1$,$x=a$で囲まれた図形の面積を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。