タグ「方程式」の検索結果

60ページ目:全1641問中591問~600問を表示)
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3+1=0$の$-1$でない解の$1$つを$\alpha$とするとき,
\[ (3+7 \alpha)(7+3 \alpha)-4(1+\alpha^2)=[ア] \alpha \]
となる.
(2)三角形$\mathrm{ABC}$において,
\[ \mathrm{AB}=2,\quad \angle \mathrm{ACB}=\frac{\pi}{4},\quad \angle \mathrm{BAC}=\frac{\pi}{3} \]
であるとき,$\mathrm{AC}=[イ]$である.
(3)$X=\left( \begin{array}{rr}
2 & 1 \\
-2 & -1
\end{array} \right)$,$Y=\left( \begin{array}{rr}
-3 & 0 \\
0 & -3
\end{array} \right)$および自然数$n$に対し,
\[ 3X^n-5X^3Y+X^2Y^2+XY^3+Y^n=\left( \begin{array}{cc}
[ウ] & [エ] \\
[オ] & [カ]
\end{array} \right) \]
となる.
(4)$a,\ b$を$a>0$,$b>1$となる実数とする.放物線$y=-ax^2+b$と円$x^2+y^2=1$の共有点が$2$個であるための必要十分条件は,$b=[キ]$かつ$a>[ク]$が成り立つことである.ただし,$[キ]$には$a$の式,$[ク]$には数を記入すること.
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
以下の$[ト]$,$[ナ]$,$[ニ]$には三角関数は$\sin \theta$と$\cos \theta$のみを用いて記入し,$[ヌ]$には$x$の式,$[ネ]$には$y$の式を記入すること.

座標平面上の$2$点$(1,\ 0)$,$(0,\ 1)$を結ぶ曲線$C$が媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=f(\theta) \\
y=g(\theta)
\end{array} \right. \quad \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right) \]
と表されているとする.いま,関数$f(\theta)$,$g(\theta)$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$で連続,$\displaystyle 0<\theta<\frac{\pi}{2}$で微分可能かつ$f^\prime(\theta) \neq 0$であるとする.また$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,点$(f(\theta),\ g(\theta))$における曲線$C$の接線の傾きが$-\tan \theta$であり,この接線から$x$軸,$y$軸で切り取られる線分の長さがつねに一定で$1$であるとする.
まず,この曲線$C$の方程式を求めたい.$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,曲線$C$上の点$(f(\theta),\ g(\theta))$における接線を$y=-(\tan \theta)x+h(\theta)$と表すと$h(\theta)=[ト]$となる.この接線の傾きが$\displaystyle \frac{g^\prime(\theta)}{f^\prime(\theta)}$となることより,$f(\theta)=[ナ]$,$g(\theta)=[ニ]$となる.したがって,曲線$C$を$x,\ y$の方程式で表すと
\[ [ヌ]+[ネ]=1 \quad (x \geqq 0,\ y \geqq 0) \]
となる.
次に,点$(f(\theta),\ g(\theta))$における曲線$C$の法線を$\ell(\theta)$とする.$\displaystyle \theta \neq \frac{\pi}{4}$のとき$\ell(\theta)$と$\displaystyle \ell \left( \frac{\pi}{4} \right)$との交点の$x$座標を$X(\theta)$とすると,$\displaystyle \lim_{\theta \to \frac{\pi}{4}} X(\theta)=[ノ]$となる.
また,曲線$C$と$x$軸,$y$軸で囲まれた部分の面積は$[ハ]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
$a$を実数とする.$2$次関数
\[ f(x)=x^2-ax+1 \]
の区間$0 \leqq x \leqq 1$における最大値を$M(a)$,最小値を$m(a)$と表す.

(1)$2$つの関数$b=M(a)$と$b=m(a)$のグラフをかけ.
(2)$b$を実数とする.$2$次方程式
\[ x^2-ax+1-b=0 \]
が区間$0 \leqq x \leqq 1$において少なくとも$1$つの解を持つような点$(a,\ b)$全体の集合を,$(1)$を用いて斜線で図示せよ.
自治医科大学 私立 自治医科大学 2014年 第3問
方程式$\displaystyle \left( \frac{3}{4} \right)^{2x}=\left( \frac{16}{9} \right)^{x-1}$の解を$a$とするとき,$6a$の値を求めよ.
自治医科大学 私立 自治医科大学 2014年 第6問
方程式$\cos 2\theta-3 \sin \theta+1=0 (0 \leqq \theta<2\pi)$の$2$つの解を$\alpha,\ \beta$とする.$\displaystyle \frac{\alpha+\beta}{\pi}$の値を求めよ.
獨協大学 私立 獨協大学 2014年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$2$次関数$y=x^2-6x+7$のグラフは$y=x^2+2x+2$のグラフを,$x$軸方向に$[$1$]$,$y$軸方向に$[$2$]$だけ平行移動したものである.
(2)次の式の分母を有理化せよ.
\[ (ⅰ) \frac{\sqrt{3}}{2-\sqrt{3}}=[$3$] \qquad (ⅱ) \frac{5 \sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=[$4$] \]
(3)$2$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(5,\ 2)$を結ぶ線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}([$5$],\ [$6$])$を通り,線分$\mathrm{AB}$に垂直な直線の方程式は$[$7$]$と表される.
(4)数列$\{a_n\}$が$2,\ 3,\ 7,\ 14,\ 24,\ \cdots$のように与えられている.その階差数列を$\{b_n\}$とする.このとき,$b_1=[$8$]$,$b_2=[$9$]$であり,数列$\{b_n\}$の一般項は$b_n=[$10$]$と表される.よって,数列$\{a_n\}$の一般項は$a_n=[$11$]$となる.
(5)$x+y=20$,$x>0$,$y>0$であるとき,$\log_{\frac{1}{10}}x+\log_{\frac{1}{10}}y$の最小値は$[$12$]$である.
(6)各辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CA}=k$である$\triangle \mathrm{ABC}$の面積は,$k=[$13$]$のとき最大値$[$14$]$をとる.
(7)$2$つのベクトル$\overrightarrow{x}=(a,\ b)$,$\overrightarrow{y}=(1,\ c)$について,$\overrightarrow{x} \perp \overrightarrow{y}$,$|\overrightarrow{x}-\overrightarrow{y}|=2$,$abc=-1$を満たす実数$a,\ b,\ c$の組合せは$[$15$]$通り存在する.また,このうち$a+b+c$の最小値は$[$16$]$となる.
(8)$2$人の男性$\mathrm{A}$,$\mathrm{B}$と$2$人の女性$\mathrm{a}$,$\mathrm{b}$がいる.この$4$人は無作為に異性を$1$人ずつ選ぶ.このとき,男性が選んだ女性がその男性を選べば,その男女をペアとする.たとえば,男性$\mathrm{A}$が女性$\mathrm{a}$を選び,女性$\mathrm{a}$も男性$\mathrm{A}$を選べば,その男女はペアとなる.このとき,ペアが全くできない確率は$[$17$]$,ペアがちょうど$1$組だけできる確率は$[$18$]$,ペアが$2$組できる確率は$[$19$]$である.
埼玉工業大学 私立 埼玉工業大学 2014年 第3問
曲線$\ell:y=\log x (1 \leqq x \leqq 2)$上の点$(t,\ \log t)$における$\ell$の接線の方程式は
\[ y=\frac{[ハ]}{t}x+\log t-[ヒ] \]
であり,この接線と直線$x=1$,$x=2$および$\ell$で囲まれた図形の面積$S$は,
\[ S=\frac{[フ]}{2t}+\log t-[ヘ] \log 2 \]
である.$\displaystyle t=\frac{[ホ]}{[マ]}$のとき,$S$は最小値$\displaystyle 1+\log \frac{[ミ]}{[ム]}$をとる.
神戸薬科大学 私立 神戸薬科大学 2014年 第1問
次の問いに答えよ.

(1)$4$次式$x^2+(x^2-1)^2$を複素数の範囲で因数分解すると$[ア]$である.
(2)不等式$x+2 \leqq |x^2-x-6|$を$x$について解くと$[イ]$である.
(3)関数$F(x)$が$F^\prime(x)=(3x+2)^2$,$F(0)=3$を満たすとき$F(x)=[ウ]$である.
(4)$2$次方程式$x^2-4x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$a_n=\alpha^n-\beta^n$($n$は自然数)とおく.このとき,$\displaystyle \frac{a_{10}-2a_8}{a_9}$の値を求めると$[エ]$である.
北海道薬科大学 私立 北海道薬科大学 2014年 第3問
円$(x-2)^2+(y-3)^2=9$と放物線$y=x^2-4x+a+4$($a$は定数)は,$2$つの点で接している.

(1)$a$の値は$\displaystyle \frac{[アイウ]}{[エ]}$である.
(2)接点の座標は$\displaystyle \left( [オ] \pm \frac{\sqrt{[カキ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right)$であり,$2$つの接線の方程式は$y=\pm \sqrt{[サシ]}(x-[ス])+[セソタ]$である(複号同順).
(3)$(2)$で得られた$2$つの接線の交点の座標は$([チ],\ [ツテト])$である.
神戸薬科大学 私立 神戸薬科大学 2014年 第2問
次の問いに答えよ.

(1)円$(x-a)^2+(y-b)^2=A$($a,\ b,\ A$は定数で$A>0$)と直線$y=x$が接するとき,$A$を$a$と$b$で表すと$A=[オ]$である.
(2)円$x^2+y^2=5$に接し,傾きが$-2$である直線の方程式は$[カ]$である.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。