タグ「方程式」の検索結果

55ページ目:全1641問中541問~550問を表示)
宮崎大学 国立 宮崎大学 2014年 第1問
曲線$\displaystyle C_1:y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$上の点$\displaystyle (t,\ \cos t) \left( 0<t<\frac{\pi}{2} \right)$における曲線$C_1$の接線を$\ell$とする.また,$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$と接線$\ell$との交点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とし,放物線$\displaystyle C_2:y=-\frac{x^2}{2}+ax+c$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るものとする.このとき,次の各問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1$,$C_2$と$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$で囲まれる部分の面積を$S$とする.$S$を,$a$と$c$を用いて表せ.
(3)$(2)$の$S$が最小となる$t$の値を求めよ.
宮崎大学 国立 宮崎大学 2014年 第3問
$a>0$,$a \neq 1$,$b>0$とする.このとき,変数$x$の関数
\[ f(x)=4x^2+4x \log_ab+1 \]
について,次の各問に答えよ.

(1)$2$次方程式$f(x)=0$が重解を持つようなすべての$a,\ b$を,座標平面上の点$(a,\ b)$として図示せよ.
(2)$2$次方程式$f(x)=0$が$\displaystyle 0<x<\frac{1}{2}$の範囲内にただ$1$つの解を持つようなすべての$a,\ b$を,座標平面上の点$(a,\ b)$として図示せよ.
(3)放物線$y=f(x)$の頂点の座標を$(X,\ Y)$とする.点$(a,\ b)$が$(2)$の条件を満たしながら動くとき,点$(X,\ Y)$の軌跡を座標平面上に図示せよ.
九州工業大学 国立 九州工業大学 2014年 第1問
放物線$C:y=ax^2+bx+c (a>0)$を考える.$2$本の直線
\[ \ell_1:y=\frac{5}{2}x \quad \text{および} \quad \ell_2:y=-\frac{1}{2}x \]
は$C$に接するものとする.$C$と$\ell_1$の接点を$\mathrm{P}$,$C$と$\ell_2$の接点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\alpha,\ \beta,\ \gamma (\alpha \neq 0)$を定数とするとき,$2$次方程式$\alpha x^2+\beta x+\gamma=0$が重解を持つための条件を求めよ.
(2)$b$の値を求めよ.また,$c$を$a$を用いて表せ.
(3)$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$a$を用いて表せ.
(4)$a$の値にかかわらず$C$の頂点は直線$m$上にある.$m$の方程式を求めよ.
(5)$C$と$\ell_1$,$\ell_2$で囲まれた部分の面積を$a$を用いて表せ.
富山大学 国立 富山大学 2014年 第3問
実数$a,\ b,\ c (b \neq 0)$に対して,次の問いに答えよ.

(1)$2$次方程式$x^2-(a+c)x+ac-b^2=0$は異なる$2$つの実数解をもつことを示せ.
(2)$(1)$の$2$つの実数解を$\alpha,\ \beta (\alpha<\beta)$とする.$x$についての恒等式
\[ (x+p)(x-\alpha)-(x+q)(x-\beta)=1 \]
が成り立つとき,定数$p,\ q$を$\alpha,\ \beta$を用いて表せ.
(3)$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
b & c
\end{array} \right)$と$(2)$の$\alpha,\ p$に対して,$B=(A+pE)(A-\alpha E)$とおく.このとき,$B^2=B$であることを示せ.ただし,$E$は$2$次の単位行列である.
奈良教育大学 国立 奈良教育大学 2014年 第1問
すべての実数$m$に対して,次の$x$についての$2$次方程式が実数解をもつときの,$a$の値の範囲を求めよ.
\[ x^2-4x+3+m(x-a)=0 \]
奈良教育大学 国立 奈良教育大学 2014年 第4問
次の問いに答えよ.

(1)曲線$y=-x^2-2x$と$x$軸とで囲まれた部分の面積$S$を求めよ.
(2)曲線$y=-x^2-2x$を$y$軸方向に平行移動した曲線を$y=f(x)$とする.その曲線$y=f(x)$と$x$軸とで囲まれた部分の面積が$8S$となった.曲線$y=f(x)$の方程式を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第1問
$p$を正の実数として,放物線$C:y^2=4px$を定める.$C$の頂点を$\mathrm{O}$,焦点を$\mathrm{F}$,準線を$\ell:x=-p$とする.$C$上の$2$点$\mathrm{A}(a,\ 2 \sqrt{pa}) (a>0)$と$\mathrm{B}(b,\ -2 \sqrt{pb}) (b>0)$を考えるとき,以下の問いに答えよ.

(1)$\mathrm{A}$における$C$の接線を$\ell (\mathrm{A})$とし,$\ell(\mathrm{A})$と準線$\ell$との交点を$\mathrm{P}$とする.$\ell(\mathrm{A})$の方程式をかいて,$\mathrm{P}$の座標を求めよ.また,線分$\mathrm{AP}$の長さは線分$\mathrm{AF}$の長さより大きいことを示せ.
(2)接線$\ell(\mathrm{A})$が直線$\mathrm{AB}$と$\mathrm{A}$において直交するとき,$b$を$a,\ p$を用いて表せ.また$a$が$0<a<\infty$の範囲内を動くとき,$b$の最小値を求めよ.

以下$(2)$の最小値を実現する$C$上の$2$点を$\mathrm{A}_0$,$\mathrm{B}_0$とし,接線$\ell(\mathrm{A}_0)$と準線$\ell$の交点を$\mathrm{P}_0$とする.

(3)直線$\mathrm{OA}_0$と直線$\mathrm{P}_0 \mathrm{B}_0$は$\mathrm{O}$において直交することを示せ.
(4)$\triangle \mathrm{A}_0 \mathrm{OB}_0$の面積を$S$,線分$\mathrm{A}_0 \mathrm{B}_0$と$C$で囲まれた図形の面積を$T$とするとき,比$S:T$を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第2問
関数$\displaystyle f(x)=\frac{3 \sqrt{3}}{\sin x}-\frac{1}{\cos x} \left( 0<|x|<\frac{\pi}{2} \right)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の増減表を作成し,極値を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$は,$3$次式$P(t)=t(2t^2-1)$を用いて,
\[ f^{\prime\prime}(x)=3 \sqrt{3} P \left( \frac{1}{\sin x} \right)-P \left( \frac{1}{\cos x} \right) \]
と表されることを示せ.また,$\displaystyle 0<x_1<x_2<\frac{\pi}{2}$のとき$f^{\prime\prime}(x_1)>f^{\prime\prime}(x_2)$となることを示せ.
(3)$k$を定数とするとき,方程式$f(x)=k$の異なる実数解は何個あるか.$k$の値によって分類せよ.
(4)$y=f(x)$の変曲点はただ$1$つ存在することを示せ.また,この変曲点が第何象限にあるか,調べよ.
和歌山大学 国立 和歌山大学 2014年 第2問
次の問いに答えよ.

(1)$t$を実数とする.$x$についての方程式${2}^x+{2}^{-x}=t$の実数解の個数を調べよ.
(2)$a$と$b$を実数とし,$x$についての方程式${4}^x+{4}^{-x}+a({2}^x+{2}^{-x})+b=0$が,ちょうど$3$個の実数解をもつとする.このとき,点$(a,\ b)$の存在する範囲を図示せよ.
和歌山大学 国立 和歌山大学 2014年 第4問
箱の中に,$1$から$4$までの整数が$1$つずつ重複せずに書かれた$4$枚のカードが入っている.この箱から$2$枚のカードを同時に取り出し,書かれた整数のうち,小さい方を$a$,大きい方を$b$とする.また,放物線$C:y=x^2$上の点$(a,\ a^2)$における接線を$\ell$とし,$\ell$に平行で点$(b,\ b^2)$を通る直線を$m$とする.さらに,放物線$C$と直線$m$で囲まれた部分の面積を$S$とする.このとき,次の問いに答えよ.

(1)直線$m$の方程式を$a,\ b$を用いて表せ.
(2)$S$を$a,\ b$を用いて表せ.
(3)$S$の期待値を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。