タグ「方程式」の検索結果

53ページ目:全1641問中521問~530問を表示)
富山大学 国立 富山大学 2014年 第2問
点$\mathrm{P}_0$を$xy$平面の原点とし,点$\mathrm{P}_1$の座標を$(1,\ 0)$とする.点$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\cdots$を次のように定める.$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_{n-1}$を中心として点$\mathrm{P}_n$を反時計回りに$\theta (0<\theta<\pi)$だけ回転させた点を$\mathrm{Q}_n$とし,点$\mathrm{P}_{n+1}$を$\overrightarrow{\mathrm{P}_{n-1} \mathrm{Q}_n}=\overrightarrow{\mathrm{P}_n \mathrm{P}_{n+1}}$となるようにとる.このとき,次の問いに答えよ.

(1)$k=0,\ 1,\ 2,\ \cdots$に対して,

$\displaystyle \sin \frac{\theta}{2} \cos k \theta=\frac{1}{2} \left\{ -\sin \left( \frac{2k-1}{2} \theta \right)+\sin \left( \frac{2k+1}{2} \theta \right) \right\}$

$\displaystyle \sin \frac{\theta}{2} \sin k \theta=\frac{1}{2} \left\{ \cos \left( \frac{2k-1}{2} \theta \right)-\cos \left( \frac{2k+1}{2} \theta \right) \right\}$

が成り立つことを示せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して,

$\displaystyle 1+\cos \theta+\cdots +\cos n\theta=\frac{1}{2 \sin \displaystyle\frac{\theta}{2}} \left\{ \sin \left( \displaystyle\frac{2n+1}{2} \theta \right)+\sin \frac{\theta}{2} \right\}$

$\displaystyle \sin \theta+\cdots +\sin n\theta=\frac{1}{2 \sin \displaystyle\frac{\theta}{2}} \left\{ -\cos \left( \displaystyle\frac{2n+1}{2} \theta \right)+\cos \frac{\theta}{2} \right\}$

が成り立つことを示せ.
(3)点$\mathrm{P}_n$の座標を$(x_n,\ y_n)$とおくとき,$x_n$および$y_n$を求めよ.
(4)すべての点$\mathrm{P}_n (n=0,\ 1,\ 2,\ \cdots)$を通る円の方程式を求めよ.
岐阜大学 国立 岐阜大学 2014年 第2問
サイコロを$3$回振り,出た目を順に$a,\ b,\ c$とする.関数$f(x)$を
\[ f(x)=3ax^2-2bx+3c \]
と定める.以下の問に答えよ.

(1)方程式$f(x)=0$が$x=1$を解にもつ確率を求めよ.
(2)方程式$f(x)=0$が異なる$2$つの実数解をもつ確率を求めよ.
(3)方程式$f(x)=0$が異なる$2$つの実数解をもつような$(a,\ b,\ c)$の組について考える.このとき,$x$軸と曲線$y=f(x)$で囲まれる図形の面積$S$を$a,\ b,\ c$を用いて表せ.また,$S$の最大値を求めよ.
富山大学 国立 富山大学 2014年 第2問
次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$の範囲で方程式$\cos 2x-\cos x=0$の解を求めよ.
(2)$0 \leqq x \leqq \pi$の範囲で$2$つの曲線$y=\cos 2x$と$y=\cos x$で囲まれた図形の面積$S$を求めよ.
(3)$(2)$の図形を$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
富山大学 国立 富山大学 2014年 第2問
次の問いに答えよ.

(1)$2$つの実数$a,\ b$がともに$2$より大きいための必要十分条件は,$ab-2(a+b)+4>0$かつ$a+b>4$であることを示せ.
(2)定数$k$に対して,方程式
\[ (\log_2x)^2-(k+2) \log_2x-k+17=0 \]
を考える.

(i) 方程式が実数解$\alpha,\ \beta$をもつとき,$\log_2(\alpha\beta)$と$(\log_2 \alpha)(\log_2 \beta)$を$k$を用いて表せ.
(ii) 方程式が$4$より大きい異なる$2$つの実数解をもつような$k$の値の範囲を求めよ.
富山大学 国立 富山大学 2014年 第1問
曲線$\displaystyle C:y=\frac{4}{x}$上に$2$点$\mathrm{P}(1,\ 4)$,$\mathrm{Q}(4,\ 1)$をとる.直線$\ell:y=kx (k<0)$に垂直な直線で$\mathrm{P}$を通るものを$\ell_{\mathrm{P}}$とし,$\mathrm{Q}$を通るものを$\ell_{\mathrm{Q}}$とする.このとき,次の問いに答えよ.

(1)$\ell_{\mathrm{P}}$,$\ell_{\mathrm{Q}}$の方程式を求めよ.
(2)$\ell_{\mathrm{P}}$と$\ell$の交点$\mathrm{R}$の$x$座標を求めよ.また,$\ell_{\mathrm{Q}}$と$\ell$の交点$\mathrm{S}$の$x$座標を求めよ.
(3)$C,\ \ell,\ \ell_{\mathrm{P}},\ \ell_{\mathrm{Q}}$で囲まれた図形の面積$M$を求めよ.
(4)$k$を動かすとき,$M$の最大値を求めよ.
富山大学 国立 富山大学 2014年 第3問
関数$f(x)$と$g(x)$を
\[ f(x)=\left\{ \begin{array}{ll}
|x \log \abs{x|} & (x \neq 0) \phantom{\frac{[ ]}{2}} \\
0 \phantom{\frac{[ ]}{2}} & (x=0)
\end{array} \right. \]
\[ g(x)=-x^2+1 \]
により定める.このとき,次の問いに答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x>-\frac{1}{\sqrt{x}}$が成り立つことを示し,これを用いて$f(x)$は$x=0$で連続であることを示せ.
(2)$f(x)$の極値を求め,$y=f(x)$のグラフの概形をかけ.
(3)方程式$f(x)=g(x)$の解は$x=-1,\ 1$のみであることを示せ.
(4)$0<r<1$とする.曲線$y=f(x)$と曲線$y=g(x)$によって囲まれた図形のうち,$x \geqq r$の範囲の部分の面積を$S(r)$とおく.このとき,$\displaystyle \lim_{r \to +0} S(r)$を求めよ.
富山大学 国立 富山大学 2014年 第3問
曲線$y=f(x)=x^3-3x^2+x+6$を$C_1$とする.このとき,次の問いに答えよ.

(1)曲線$C_1$の接線で点$(-1,\ f(-1))$を通るもののうち,傾きの小さいものを$\ell_1$,傾きの大きいものを$\ell_2$とする.$\ell_1,\ \ell_2$の方程式を求めよ.
(2)$g(x)$を$x$の$2$次式とし,曲線$y=g(x)$を$C_2$とする.曲線$C_2$が,曲線$C_1$と直線$\ell_1$の共有点および曲線$C_1$と直線$\ell_2$の共有点を通るとき,$g(x)$を求めよ.
(3)曲線$C_2$と直線$\ell_1,\ \ell_2$によって囲まれた図形の面積$S$を求めよ.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
大分大学 国立 大分大学 2014年 第4問
$a,\ b$を実数とし,$f(x)={2}^{2x-1}-a \cdot {2}^x+b$とおく.

(1)$a=3,\ b=4$のとき,方程式$f(x)=0$の解を求めなさい.
(2)$a>0,\ b=0$のとき,方程式$f(x)=0$の解を求めなさい.
(3)方程式$f(x)=0$が異なる$2$つの実数解をもつとき,点$(a,\ b)$の表す領域を図示しなさい.
大分大学 国立 大分大学 2014年 第1問
$k>0$とし,$f(x)=x(x+k)(x+2k)$とおく.曲線$y=f(x)$を$C$とする.

(1)関数$f(x)$は異なる$2$つの極値をもつことを示しなさい.
(2)曲線$C$上の極値をとる点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点$\mathrm{R}$の座標を求めなさい.
(3)点$\mathrm{R}$が曲線$C$上にあることを示し,点$\mathrm{R}$における曲線$C$の接線の方程式を求めなさい.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。