タグ「方程式」の検索結果

49ページ目:全1641問中481問~490問を表示)
尾道市立大学 公立 尾道市立大学 2015年 第4問
$a>3$とし,座標平面上に円$C:x^2+y^2=9$と点$\mathrm{P}(a,\ 0)$がある.このとき次の問いに答えなさい.

(1)円$C$上に点$\mathrm{Q}(x_0,\ y_0)$をとり,線分$\mathrm{PQ}$を$1:2$に内分する点を$\mathrm{R}$とする.このとき点$\mathrm{R}$の座標を$a,\ x_0,\ y_0$を用いて表しなさい.
(2)点$\mathrm{Q}$が円$C$上を動くとき,点$\mathrm{R}$の軌跡の方程式を求めなさい.
(3)$(2)$で求めた点$\mathrm{R}$の軌跡と円$C$の共有点が$1$つのみであるとき,共有点の座標と$a$の値を求めなさい.
大阪府立大学 公立 大阪府立大学 2015年 第3問
$a>0$,$b>0$とし,座標平面において,双曲線$\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$を曲線$C$とする.曲線$C$の漸近線のうち傾きが正の漸近線を$\ell$とし,曲線$C$上の点$\mathrm{P}(p,\ q)$における曲線$C$の接線を$m$とする.ただし,$p>0$,$q>0$とする.また,漸近線$\ell$と接線$m$の交点を$\mathrm{Q}$とし,接線$m$と$x$軸の交点を$\mathrm{R}$とする.原点を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)漸近線$\ell$の方程式を$a,\ b$を用いて表せ.
(2)接線$m$の方程式を$a,\ b,\ p$を用いて表せ.
(3)三角形$\mathrm{OQR}$の面積$S(p)$を$p$を用いて表せ.
(4)極限値$\displaystyle \lim_{p \to \infty} S(p)$を求めよ.
九州大学 国立 九州大学 2014年 第1問
関数$\displaystyle f(x)=x-\sin x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$を考える.曲線$y=f(x)$の接線で傾きが$\displaystyle \frac{1}{2}$となるものを$\ell$とする.

(1)$\ell$の方程式と接点の座標$(a,\ b)$を求めよ.
(2)$a$は$(1)$で求めたものとする.曲線$y=f(x)$,直線$x=a$,および$x$軸で囲まれた領域を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
横浜国立大学 国立 横浜国立大学 2014年 第5問
$xy$平面上に曲線$C:y=x^2$がある.$C$上の$2$点$\mathrm{P}$,$\mathrm{Q}$が$\mathrm{PQ}=2$をみたしながら動くとき,$\mathrm{PQ}$の中点の軌跡を$D$とする.次の問いに答えよ.

(1)$D$の方程式を求めよ.
(2)$C$,$D$,$y$軸および直線$\displaystyle x=\frac{1}{2}$で囲まれた部分を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
京都大学 国立 京都大学 2014年 第1問
$0^\circ \leqq \theta<90^\circ$とする.$x$についての$4$次方程式
\[ \{x^2-2(\cos \theta)x-\cos \theta+1\}\{ x^2+2(\tan \theta)x+3\}=0 \]
は虚数解を少なくとも$1$つ持つことを示せ.
静岡大学 国立 静岡大学 2014年 第4問
$a$を定数とする.$2$次関数$f(x)$は等式
\[ f(x)=6(a+1)x^2-12x \int_0^1 f(t) \, dt+5a-2 \]
を満たすとする.このとき,$2$次関数$f(x)$と$3$次関数$g(x)=-4x^3+f(x)$について,次の問いに答えよ.

(1)定積分$\displaystyle \int_0^1 f(t) \, dt$を$a$を用いて表せ.
(2)$3$次関数$g(x)$の増減を調べ,極値があればその極値を求めよ.
(3)$3$次方程式$g(x)=0$が異なる$3$つの実数解をもつとき,定数$a$の値の範囲を求めよ.
名古屋大学 国立 名古屋大学 2014年 第3問
実数$t$に対して$2$点$\mathrm{P}(t,\ t^2)$,$\mathrm{Q}(t+1,\ (t+1)^2)$を考える.

(1)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線$\ell$の方程式を求めよ.
(2)$a$は定数とし,直線$x=a$と$\ell$の交点の$y$座標を$t$の関数と考えて$f(t)$とおく.$t$が$-1 \leqq t \leqq 0$の範囲を動くときの$f(t)$の最大値を$a$を用いて表せ.
(3)$t$が$-1 \leqq t \leqq 0$の範囲を動くとき,線分$\mathrm{PQ}$が通過してできる図形を図示し,その面積を求めよ.
神戸大学 国立 神戸大学 2014年 第1問
$2$次方程式$x^2-x-1=0$の$2$つの解を$\alpha,\ \beta$とし,
\[ c_n=\alpha^n+\beta^n,\quad n=1,\ 2,\ 3,\ \cdots \]
とおく.以下の問に答えよ.

(1)$n$を$2$以上の自然数とするとき,
\[ c_{n+1}=c_n+c_{n-1} \]
となることを示せ.
(2)曲線$y=c_1x^3-c_3x^2-c_2x+c_4$の極値を求めよ.
(3)曲線$y=c_1x^2-c_3x+c_2$と,$x$軸で囲まれた図形の面積を求めよ.
北海道大学 国立 北海道大学 2014年 第1問
$f(x)=x^4-4x^3-8x^2$とする.

(1)関数$f(x)$の極大値と極小値,およびそのときの$x$を求めよ.
(2)曲線$y=f(x)$に$2$点$(a,\ f(a))$と$(b,\ f(b)) (a<b)$で接する直線の方程式を求めよ.
北海道大学 国立 北海道大学 2014年 第1問
$2$つの放物線
\[ C_1:y=-x^2+\frac{3}{2},\quad C_2:y=(x-a)^2+a \quad (a>0) \]
がある.点$\displaystyle \mathrm{P}_1 \left( p,\ -p^2+\frac{3}{2} \right)$における$C_1$の接線を$\ell_1$とする.

(1)$C_1$と$C_2$が共有点を持たないための$a$に関する条件を求めよ.
(2)$\ell_1$と平行な$C_2$の接線$\ell_2$の方程式と,$\ell_2$と$C_2$の接点$\mathrm{P}_2$の座標を$a,\ p$を用いて表せ.
(3)$C_1$と$C_2$が共有点を持たないとする.$(2)$で求めた$\mathrm{P}_2$と$\mathrm{P}_1$を結ぶ線分が$\ell_1$と垂直になるとき,$p$を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。