タグ「方程式」の検索結果

20ページ目:全1641問中191問~200問を表示)
沖縄国際大学 私立 沖縄国際大学 2016年 第1問
$a$を定数とし,$2$次関数$y=x^2-2(a+1)x+10a-15$のグラフを$C$とする.次の各問いに答えなさい.

(1)グラフ$C$が$x$軸に接するとき,$a$の値を求めなさい.
(2)$(1)$で求めた関数の頂点の座標を求めなさい.
(3)$(1)$で求めた$2$次関数のグラフ$C$を点$\mathrm{A}(1,\ 2)$に関して対称移動したグラフの方程式を求めなさい.
天使大学 私立 天使大学 2016年 第3問
$x$の方程式$x^4+x^2-2Ax-A-1=0$を考える.ただし$A$は正の定数である.次の問いに答えなさい.

(1)この方程式の解$x$は,$(x^2+1)^2=x^2+\mkakko{$\mathrm{a}$}Ax+\mkakko{$\mathrm{b}$}A+\mkakko{$\mathrm{c}$}$を満たす.
(2)方程式$x^2+\mkakko{$\mathrm{a}$}Ax+\mkakko{$\mathrm{b}$}A+\mkakko{$\mathrm{c}$}=0$が重解をもつのは,$A=\mkakko{$\mathrm{d}$}$のときである.
(3)$A=\mkakko{$\mathrm{d}$}$のとき,方程式$x^4+x^2-2Ax-A-1=0$を満たす実数$x$を求めなさい.


$\displaystyle x=\frac{\mkakko{$\mathrm{e}$} \pm \sqrt{\mkakko{$\mathrm{f}$}}}{\mkakko{$\mathrm{g}$}}$
近畿大学 私立 近畿大学 2016年 第3問
放物線$y=4x^2+x$を$C$とし,$a$を正の実数とする.

(1)$C$上の点$(1,\ 5)$における接線の方程式を求めよ.
(2)点$(0,\ -a)$から$C$へ引いた$2$つの接線を$\ell_1,\ \ell_2$とする.ただし$\ell_1$の傾きは$\ell_2$の傾きより大きいとする.また,$\ell_1,\ \ell_2$と$C$との接点をそれぞれ$\mathrm{A}_1,\ \mathrm{A}_2$とする.$\ell_1,\ \ell_2$の方程式と$\mathrm{A}_1,\ \mathrm{A}_2$の座標を求めよ.
(3)$2$点$\mathrm{A}_1,\ \mathrm{A}_2$を通る直線および$C$で囲まれた図形の面積$S_1$を求めよ.
(4)$\ell_1,\ \ell_2$と$C$で囲まれた図形の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$を求めよ.
京都女子大学 私立 京都女子大学 2016年 第1問
次の各問に答えよ.

(1)$3x^2+5xy+2y^2-11x-7y-4$を因数分解せよ.
(2)袋の中に赤玉$6$個,白玉$4$個が入っている.この袋から玉を同時に$5$個取り出す.このとき,次の確率を求めよ.

(i) 赤玉が$3$個,白玉が$2$個出る確率
(ii) $2$個が同じ色で,残りの$3$個が別の色である確率

(3)方程式$21x+17y=1$の整数解をすべて求めよ.
近畿大学 私立 近畿大学 2016年 第2問
次の問いに答えよ.

(1)方程式$x^3-3x^2-9x-k=0$が異なる$3$個の実数解を持つように,定数$k$の範囲を定めよ.
(2)辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{AC}=5$の三角形$\mathrm{ABC}$がある.$\cos A$の値を求めよ.$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とすると,三角形$\mathrm{ABD}$の外接円の直径を求めよ.
(3)三角形$\mathrm{ABC}$がある.辺$\mathrm{AC}$の中点を$\mathrm{P}$,線分$\mathrm{BP}$を$t:1-t$に内分する点を$\mathrm{Q}$,直線$\mathrm{CQ}$と辺$\mathrm{AB}$の交点を$\mathrm{R}$とする.$\displaystyle \frac{\mathrm{CQ}}{\mathrm{CR}}$を$t$の式で表せ.また三角形$\mathrm{BQR}$と三角形$\mathrm{CQP}$の面積が等しくなるように$t$の値を定めよ.
近畿大学 私立 近畿大学 2016年 第3問
$i$を虚数単位とする.異なる$3$つの複素数$\alpha,\ \beta,\ \gamma$の間に等式$\gamma-i \beta=(1-i) \alpha$が成り立つものとする.さらに,$\alpha$は方程式$|\alpha-2|=|\alpha-2 \sqrt{3|i}$を満たすとする.複素数平面において$3$点$\mathrm{A}(\alpha)$,$\mathrm{B}(\beta)$,$\mathrm{C}(\gamma)$を頂点とする$\triangle \mathrm{ABC}$を考える.

(1)$\angle \mathrm{BAC}={[アイ]}^\circ$,$\angle \mathrm{ABC}={[ウエ]}^\circ$,$\angle \mathrm{ACB}={[オカ]}^\circ$である.

(2)点$\mathrm{A}$が虚軸上にあるとき,$\displaystyle \alpha=\frac{[キ] \sqrt{[ク]}}{[ケ]}i$である.さらに点$\mathrm{B}$が実軸上にあるとすると,点$\mathrm{C}$は方程式
\[ |\gamma|=|\gamma-\delta| \quad \text{(ただし$\delta$は$0$と異なる定数)} \]
を満たす.このとき$\displaystyle \delta=\frac{[コ] \sqrt{[サ]}}{[シ]}$である.

(3)点$\mathrm{B}$および点$\mathrm{C}$がそれぞれ,実軸上,虚軸上にあるとき
\[ \alpha=[ス]-\sqrt{[セ]}+\left( [ソタ]+\sqrt{[チ]} \right) i \]
である.さらに,$\gamma$が方程式$|\gamma-2|=|\gamma-2 \sqrt{3|i}$を満たすとき
\[ \beta=\frac{[ツ]-[テ] \sqrt{[ト]}}{[ナ]} \]
である.
近畿大学 私立 近畿大学 2016年 第3問
座標平面において,次の式で与えられる$2$つの円$C$,$C^\prime$を考える.

$C:x^2+y^2=13$
$C^\prime:x^2+y^2-8x+14y+13=0$

$2$つの円の$2$つの共通接線は,点$([アイ],\ [ウ])$で交わり,共通接線$\ell_1,\ \ell_2$の方程式は,それぞれ

$\ell_1:[エ]x+[オ]y=13$
$\ell_2:[カキ]x+y=[クケコ]$

である.

(1)円$C^\prime$と直線$\ell_1$の共有点の座標は$([サ],\ [シス])$である.
(2)$2$つの円の異なる$2$つの交点と$\ell_1$上の点$\mathrm{P}$が同一直線上にあるとき,点$\mathrm{P}$の座標は$([セ],\ [ソ])$である.
(3)円$C$,$C^\prime$の中心をそれぞれ$\mathrm{O}$,$\mathrm{O}^\prime$とする.$\ell_1$上の点$\mathrm{Q}$に対し,$\mathrm{OQ}+\mathrm{O}^\prime \mathrm{Q}$が最小となるとき,$\mathrm{Q}$の座標は
\[ \left( [タ],\ \displaystyle\frac{[チ]}{[ツ]} \right) \]
である.
京都女子大学 私立 京都女子大学 2016年 第3問
$2$次方程式$x^2+(2a-2)x+2a+6=0$が次の条件をみたすとき,それぞれ定数$a$の値の範囲を求めよ.

(1)異なる$2$つの実数解が$x>0$の範囲にある.
(2)$-6<x<0$の範囲に少なくとも$1$つの実数解がある.
名城大学 私立 名城大学 2016年 第2問
関数$f(x)=x^3-3x+2$について,次の問いに答えよ.

(1)関数$f(x)$の極大値と極小値を求めよ.
(2)関数$f(x)$のグラフに点$(2,\ -4)$から引いた$2$本の接線の方程式をそれぞれ求めよ.
(3)関数$f(x)$のグラフのうち$f(x) \geqq 0$の部分と,$(2)$の$2$本の接線で囲まれた部分の面積を求めよ.
名城大学 私立 名城大学 2016年 第2問
$2$つの$2$次方程式$x^2+ax-(b+1)=0$と$bx^2+2bx-(a+2)=0$がともに実数解をもたないような実数の組$(a,\ b)$の存在する領域を,$ab$平面上に図示せよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。