タグ「方程式」の検索結果

154ページ目:全1641問中1531問~1540問を表示)
愛知教育大学 国立 愛知教育大学 2010年 第6問
次の問いに答えよ.

(1)曲線$y=\log x$上の点$\mathrm{A}(1,\ 0)$における接線$\ell_1$の方程式を求めよ.
(2)曲線$y=\log x$上の点$\mathrm{B}(2,\ \log 2)$における接線$\ell_2$の方程式を求めよ.
(3)$f(x)=ax^3+bx^2+cx+d$とおく.曲線$y=f(x)$は2点$\mathrm{A},\ \mathrm{B}$を通り,さらにこの2点での接線がそれぞれ$\ell_1,\ \ell_2$と一致する.このときの$a,\ b,\ c,\ d$の値を求めよ.
(4)(3)で求めた$f(x)$に対して$g(x)=f(x)-\log x$とおく.関数$y=g(x) \ (1 \leqq x \leqq 2)$の最大値を与える$x$の値を求めよ.ただし$0.69<\log 2<0.70$であることを用いてよい.
浜松医科大学 国立 浜松医科大学 2010年 第2問
3次関数$f(x)=x^3-3ax^2 \ (a>0)$と,曲線$C:y=f(x) \ (-\infty<x<\infty)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の変曲点における接線の式を求めよ.
(2)曲線$C$はこの変曲点に関して対称であることを示せ.
(3)$b,\ c$は実数とする.3次方程式$x^3-3ax^2=bx-c$が3つの解をもち,それらの解が等差数列をなすとき,$c$を$a,\ b$の式で表せ.
(4)(3)において,等差数列の公差が$2 \sqrt{3}$に等しいとする.このとき,3次関数$f(x)-bx+c$の極値を求めよ.
九州工業大学 国立 九州工業大学 2010年 第3問
点$\mathrm{O}$を原点,点$\mathrm{P}$を楕円$\displaystyle \frac{x^2}{16}+\frac{(y-3)^2}{25}=1$上の点とする.$x$軸の正の部分を始線として動径$\mathrm{OP}$の表す角を$\theta \ (0 \leqq \theta<2\pi)$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の$y$座標を$\displaystyle \frac{a+b \sin \theta}{c+d \sin \theta}$($a,\ b,\ c,\ d$は実数)の形で表せ.
(2)点$\mathrm{P}$における楕円の接線を$\ell$とする.直線$\ell$の方程式を求めよ.
(3)点$\mathrm{A}$の座標を$(0,\ 6)$とする.点$\mathrm{A}$を(2)の直線$\ell$に関して対称移動した点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2010年 第3問
関数$y=x^3-3x^2+3$について,次の問いに答えよ.

(1)この関数のグラフに点$(3,\ -1)$から接線を引く.このとき,すべての接点の座標を求めよ.
(2)(1)で求めた接点のうち,その$x$座標が最小のものを$\mathrm{A}$,最大のものを$\mathrm{B}$とする.2点$\mathrm{A},\ \mathrm{B}$を通る直線の方程式を求めよ.
(3)この関数のグラフ上の点を$\mathrm{P}(s,\ s^3-3s^2+3)$とする.ただし,$2-\sqrt{3}<s<2+\sqrt{3}$である.このとき,点$\mathrm{P}$と(2)で求めた直線との距離$d$を$s$で表し,$d$の最大値を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第1問
次の問いに答えよ.

(1)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(2)$n \geqq 2$であるような自然数$n$に対して
\[ 1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots +(n-1) \cdot n \cdot (n+1)=(1+2+3+\cdots +n)(2+3+\cdots +n) \]
が成り立つことを示せ.
(3)関数$\displaystyle f(x)=\frac{\cos x}{\sqrt{1+\cos^2 x}} \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$の増減を調べ,最大値と最小値を求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第5問
次の問いに答えよ.

(1)$1$から$9$までの整数がひとつずつ書かれた$9$個の玉が入っている袋の中から玉を$3$個取り出す.取り出した玉に書かれた整数の和が$12$以上となる確率を求めよ.
(2)円$x^2+y^2=1$と放物線$y=x^2+5$との共通の接線のうち,円と第$1$象限で接する接線の方程式を求めよ.
(3)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して$|\overrightarrow{\mathrm{AB}}|=1$,$|\overrightarrow{\mathrm{AC}}|=5$,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=3$である.$|\overrightarrow{\mathrm{BC}}|$を求めよ.ただし,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$は$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の内積とする.
山梨大学 国立 山梨大学 2010年 第5問
関数$f(x)$を$f(x)=\log (x+1)+\sin ax$と定義する.ただし,$x \geqq 0$であり,$a$は正の定数である.

(1)$f(e-1)=0$を満たす最も小さい$a$の値を求めよ.
(2)(1)で求めた$a$の値を使って,定積分$\displaystyle \int_0^{\frac{2(e-1)}{3}}f(x) \, dx$を求めよ.
(3)$\displaystyle a=\frac{2\pi}{e-1}$とするとき,方程式$f(x)=0$は$\displaystyle 0<x<\frac{3(e-1)}{4}$の範囲に解を持つことを証明せよ.
山梨大学 国立 山梨大学 2010年 第3問
$xy$平面上に$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(2,\ 1)$がある.次の方法により,$\mathrm{A}_n(x_n,\ 0)$,$\mathrm{B}_n(0,\ y_n) \ (n=1,\ 2,\ 3,\ \cdots)$を定める.$\mathrm{A}_1$を$\mathrm{A}_1(6,\ 0)$とする.直線$\mathrm{A}_1 \mathrm{P}$と$y$軸との交点を$\mathrm{B}_1(0,\ y_1)$とし,直線$\mathrm{B}_1 \mathrm{Q}$と$x$軸との交点を$\mathrm{A}_2(x_2,\ 0)$とする.同様に直線$\mathrm{A}_2 \mathrm{P}$と$y$軸との交点を$\mathrm{B}_2(0,\ y_2)$とし,直線$\mathrm{B}_2 \mathrm{Q}$と$x$軸との交点を$\mathrm{A}_3(x_3,\ 0)$とする.以下,これを繰り返す.

(1)直線$\mathrm{A}_n \mathrm{P}$の方程式を$x_n$を用いて表せ.また,直線$\mathrm{B}_n \mathrm{Q}$の方程式を$y_n$を用いて表せ.
(2)$x_{n+1}$を$x_n$を用いて表せ.
(3)$\displaystyle z_n=\frac{1}{x_n}$とおくとき,$z_n$を求めることにより,$x_n$を$n$の式で表せ.
早稲田大学 私立 早稲田大学 2010年 第1問
$2$つの整式
\begin{eqnarray*}
f(x) &=& x^3+3x^2+mx+3 \\
g(x) &=& x^3+mx^2+(m+3)x+4
\end{eqnarray*}
を考える.ただし,$m$は整数の定数とする.$2$つの方程式$f(x)=0$,$g(x)=0$が共通の整数の解$n$をもつとき,次の問に答えよ.

(1)方程式$f(x)=0$の解をすべて求めよ.
(2)関数$y=g(x)$の極値およびそのときの$x$の値を求めよ.
(3)$2$つの曲線$y=f(x),\ y=g(x)$で囲まれた図形の面積$S$を求めよ.
早稲田大学 私立 早稲田大学 2010年 第3問
$2$次方程式$x^2+2x+4=0$の$2$つの解を$\alpha,\ \beta$として,次の問に答えよ.

(1)$\displaystyle\frac{1}{\alpha^2}+\frac{1}{\beta^2}$の値を求めよ.
(2)$2$次方程式$2x^2+ax+b=0$の解の$1$つが$\displaystyle\frac{\beta}{\alpha}$となるように,係数$a,\ b$の値を定めよ.ただし,$a,\ b$は実数とする.
(3)$\alpha^3$および$\beta^3$の値を求めよ.
(4)$i$を虚数単位,$n$を自然数とするとき,
$c(n)=\displaystyle\frac{1}{\left\{i-\left(\displaystyle \strut \frac{\alpha}{2}\right)^n\right\}\left\{i-\left(\displaystyle\frac{\beta}{2}\right)^n\right\}}$の値を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。