タグ「方程式」の検索結果

150ページ目:全1641問中1491問~1500問を表示)
大分大学 国立 大分大学 2010年 第3問
微分可能な関数$y=f(x)$が次の方程式を満たすとする.
\[ a_nf^{(n)}(x)+a_{n-1}f^{(n-1)}(x)+\cdots +a_1f^{(1)}(x)+a_0f(x)=0 (\text{A}) \]
ここに$n$は自然数,$a_i \ (i=0,\ 1,\ 2,\ \cdots, n)$は実数の定数で,$a_n \neq 0$である.また,$y^{(k)}=f^{(k)}(x)$は$f(x)$の$k$次導関数で$y^{(0)}=f^{(0)}(x)=f(x)$とする.(A)のような方程式を第$n$階微分方程式といい,(A)に対して$t$の$n$次方程式
\[ a_nt^n+a_{n-1}t^{n-1}+\cdots +a_1t+a_0=0 (\text{B}) \]
を(A)の特性方程式という.このとき次の問いに答えよ.

(1)特性方程式(B)の解が実数$r$であるとき,関数$y=e^{rx}$が方程式(A)を満たすことを証明せよ.
(2)$n$次方程式(B)が実数$r$を$k$重解$^{(\text{注})}$にもつとき,次の$t$に関する方程式は$r$を$k-1$重解にもつことを証明せよ.ただし,$k=2,\ 3,\ \cdots$とする.
\[ na_nt^{n-1}+(n-1)a_{n-1}t^{n-2}+\cdots +2a_2t+a_1=0 \]
(注) \quad $t$の$m$次方程式が適当な多項式$Q(t)$を用いて$(t-r)^kQ(t)=0$となるとき,$t=r$をこの方程式の$k$重解と定義する.ただし,$k=1,\ 2,\ \cdots$とする.
(3)実数の定数$r$に対して$x$の関数を$y_i=x^ie^{rx} \ (i=0,\ 1,\ 2,\ \cdots)$とする.このとき,$y_j^{(n)}$を$x,\ y_{j-1}^{(n-1)}$および$y_{j-1}^{(n)}$を用いて表せ.ただし,$j=1,\ 2,\ 3,\ \cdots$とする.
(4)実数$r$が$n$次方程式(B)の$k$重解であるとき$y_i=x^ie^{rx} \ (i=0,\ 1,\ 2,\ \cdots,\ k-1)$が微分方程式(A)を満たすことを証明せよ.ただし,$k$は自然数とする.
鳥取大学 国立 鳥取大学 2010年 第2問
$xy$平面における原点Oと点A$(3,\ 2)$に対して,次の問いに答えよ.

(1)傾きが$\displaystyle \frac{4}{3}$で,点Aを通る直線$\ell$の方程式を求めよ.
(2)(1)で求めた直線$\ell$の点Aにおける法線を$m$とする.直線$m$の方程式を求めよ.
(3)(1)で求めた直線$\ell$と$x$軸との交点をB,(2)で求めた直線$m$と$y$軸との交点をCとする.図形OBACを$y$軸のまわりに1回転してできる立体の体積を求めよ.
佐賀大学 国立 佐賀大学 2010年 第3問
放物線$y=-x^2+6x-7$を$C_1$とし,$C_1$の頂点をA,$C_1$上の点$(1,\ -2)$をBとする.点A,Bを通る直線を$\ell$とし,点A,Bを通る放物線$y=ax^2+bx+c$を$C_2$とする.ただし,$a,\ b,\ c$は実数,$a>0$である.このとき,次の問いに答えよ.

(1)点Aの座標を求めよ.
(2)直線$\ell$の方程式を求めよ.
(3)$b$と$c$を$a$を用いて表せ.
(4)$C_2$と$\ell$で囲まれた図形の面積を$a$を用いて表せ.
愛媛大学 国立 愛媛大学 2010年 第5問
次の問いに答えよ.

(1)次の連立不等式を解け.
\[ \left\{
\begin{array}{l}
4x^2-4x-15<0 \\
x^2-2x \geqq 0
\end{array}
\right. \]
(2)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$と$x \leqq y$の両方をみたす自然数の組$(x,\ y)$をすべて求めよ.
(3)方程式$\displaystyle \left( \log_2\sqrt{x}+\log_2x^2+\log_2\frac{1}{x} \right)^2=9$を解け.
(4)原点O,および3点A$(1,\ 0,\ 0)$,B$(0,\ 1,\ 0)$,C$(0,\ 0,\ 1)$がある.$0<s<1$に対して,線分AB,線分CAを$s:(1-s)$に内分する点を,それぞれP,Qとするとき,内積$\overrightarrow{\mathrm{OP}}\cdot \overrightarrow{\mathrm{OQ}}$を$s$を用いて表せ.
(5)等式$\displaystyle \int_0^{\frac{\pi}{4}} (x+a) \cos 2x \, dx=\frac{\pi}{8}$が成り立つとき,定数$a$の値を求めよ.
福井大学 国立 福井大学 2010年 第5問
$k$を定数とし,$x$の関数$f(x),\ g(x)$を
\[ f(x)=x^2+4x+k,\quad g(x)=\int_{-x}^x f(t) \, dt \]
によって定める.$g(x)$が$x=2$で極値を持つとき,以下の問いに答えよ.

(1)定数$k$の値を求めよ.
(2)$g(x)$の極値をすべて求めよ.
(3)$a$を正の実数とする.曲線$y=f(x)$上の点$(a,\ f(a))$における接線$\ell$と,曲線$y=g(x)$上の点$(a,\ g(a))$における接線$m$が平行になるとき,$a$の値と接線$\ell,\ m$の方程式をそれぞれ求めよ.
長崎大学 国立 長崎大学 2010年 第7問
4次方程式の解について,次の問いに答えよ.ただし,次のことは既知としてよい.
\begin{screen}
自然数$k,\ l,\ m$が次の条件

\mon[(イ)] $k$と$l$は1以外の公約数をもたない
\mon[(ロ)] $k$は$lm$の約数である

を満たすならば,$k$は$m$の約数である.
\end{screen}

(1)$a,\ b,\ c,\ d$は整数で,$d \neq 0$とする.次の方程式
\[ x^4+ax^3+bx^2+cx+d=0 \]
が有理数の解$r$をもつとき,$|\,r\,|$は自然数であり,かつ$|\,d\,|$の約数に限ることを証明せよ.
(2)次の方程式
\[ 2x^4-2x-1=0 \]
の実数解はすべて無理数であることを証明せよ.
鳥取大学 国立 鳥取大学 2010年 第4問
関数$f(x)=xe^{-x}$について,次の問いに答えよ.

(1)関数$f(x)$の極値,グラフの凹凸,変曲点を調べ,$y=f(x)$のグラフをかけ.
(2)曲線$y=f(x)$の接線で,点$\displaystyle \left( -\frac{1}{2},\ 0 \right)$を通るものが2本あることを示し,それらの方程式を求めよ.
(3)(2)で求めた2本の接線と曲線$y=f(x)$で囲まれる図形の面積を求めよ.
鳥取大学 国立 鳥取大学 2010年 第3問
関数$f(x)=xe^{-x}$について,次の問いに答えよ.

(1)関数$f(x)$の極値,グラフの凹凸,変曲点を調べ,$y=f(x)$のグラフをかけ.
(2)曲線$y=f(x)$の接線で,点$\displaystyle \left( -\frac{1}{2},\ 0 \right)$を通るものが2本あることを示し,それらの方程式を求めよ.
(3)(2)で求めた2本の接線と曲線$y=f(x)$で囲まれる図形の面積を求めよ.
鳥取大学 国立 鳥取大学 2010年 第4問
$a,\ k$は定数であり,$0<k<1$とする.次の問いに答えよ.

(1)方程式$x=a+k \sin x$はただ一つの実数解をもつことを示せ.
(2)不等式$|\sin \theta| \leqq |\,\theta\,|$がすべての実数$\theta$に対して成立することを示せ.
(3)不等式$|\sin \alpha-\sin \beta| \leqq |\alpha-\beta|$がすべての実数$\alpha,\ \beta$に対して成立することを示せ.
(4)数列$\{x_n\}$を,$x_0=0,\ x_n=a+k \sin x_{n-1} \ (n=1,\ 2,\ \cdots)$によって定める.数列$\{x_n\}$は(1)の方程式$x=a+k \sin x$の解に収束することを示せ.
愛媛大学 国立 愛媛大学 2010年 第7問
行列$\biggl( \begin{array}{cc}
a & b \\
6 & -1
\end{array} \biggr)$の表す点の移動を$f$とし,$\ell$を直線$y=2x-1$とする.また,$f$による$\ell$上の点の像はすべて$\ell$上にあり,$\ell$上のある点Pは$f$によってP自身に移されるとする.

(1)$a,\ b$の値を求めよ.
(2)Pの座標を求めよ.
(3)次の条件\maru{1},\maru{2},\maru{3}をすべてみたす直線$m$の方程式を求めよ.

\mon[\maru{1}] $m$はPを通る.
\mon[\maru{2}] $f$による$m$上の点の像はすべて$m$上にある.
\mon[\maru{3}] $m$は$\ell$と異なる.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。