タグ「方程式」の検索結果

149ページ目:全1641問中1481問~1490問を表示)
長崎大学 国立 長崎大学 2010年 第1問
$a,\ b$は実数で,$a>1$とする.$t$の関数
\[ f(t)=2t^3-3(a+1)t^2+6at+b \]
について,次の問いに答えよ.

(1)関数$f(t)$の極値を,$a,\ b$を用いて表せ.
(2)$a$の値を$x$座標,$b$の値を$y$座標とする$xy$平面上の点P$(a,\ b)$を考える.このとき,3次方程式$f(t)=0$が相異なる3つの実数解をもつような点P$(a,\ b)$の存在する領域$D$を$xy$平面上に図示せよ.
(3)$D$および$D$の境界からなる領域を$E$とする.領域$E$のうち,
\[ y \leqq -x^2+4x-11 \]
を満たす部分の面積を求めよ.
三重大学 国立 三重大学 2010年 第3問
$y=\sin 2x+\cos x$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$に対応する部分を$C$とする.また点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$におけるグラフの接線を$\ell$とする.このとき次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で曲線$C$が$\ell$の上側になる部分はないことを示せ.
(3)曲線$C$,直線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
三重大学 国立 三重大学 2010年 第4問
$\displaystyle y=\sin 2x-x+\frac{\pi}{2}$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$に対応する部分を$C$とする.また点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$におけるグラフの接線を$\ell$とする.このとき次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で曲線$C$が$\ell$の上側になる部分はないことを示せ.
(3)曲線$C$,直線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点$\mathrm{P}(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)$\mathrm{P}$が動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点P$(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)Pが動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第4問
関数$\displaystyle f(x)=\frac{\log x}{x\sqrt{x}} \ (x>1)$に対して次の問いに答えよ.必要ならば,自然対数の底$e$の値は$2<e<3$であることを用いてよい.

(1)関数$f(x)$の増減を調べよ.
(2)曲線$y=f(x)$上の点P$(t,\ f(t))$における法線$\ell$の方程式を求めよ.
(3)点Pから$x$軸に下ろした垂線をPQとする.(2)で求めた法線$\ell$と$x$軸との交点をRとする.2点Q,Rの距離の最大値を求めよ.
大分大学 国立 大分大学 2010年 第2問
中心の$xyz$座標が$(0,\ 0,\ 1)$で半径が1の球$G$と点P$(0,\ -2,\ a)$に関して,点Pを通る直線が球$G$と共有点をもつとき,この直線と$xy$平面の交点全体が作る図形の外形を表す方程式を求めよ.また,その方程式が表す図形を実数$a$に関して分類せよ.
大分大学 国立 大分大学 2010年 第4問
$0<k<1$である定数$k$について,
\begin{eqnarray}
& & f(x)=\cos x -k \nonumber \\
& & g(x)=\sin x -k \tan x \nonumber
\end{eqnarray}
とおく.

(1)$\displaystyle 0<x < \frac{\pi}{2}$で,方程式$f(x)=0$は,ただ1つの実数解をもつことを示しなさい.
(2)$\displaystyle 0<x < \frac{\pi}{2}$で,方程式$g(x)=0$は,ただ1つの実数解をもつことを示しなさい.
(3)(2)での実数解を$\alpha$とする.定積分
\[ \int_0^\alpha g(x) \, dx \]
を$k$の式で表しなさい.
福井大学 国立 福井大学 2010年 第4問
$k$を実数とする.Oを原点とする座標平面上の曲線$C:y=\log x -k$について,$C$の接線のうちOを通るものを$\ell_1$とし,その接点をPとする.以下の問いに答えよ.

(1)$\ell_1$の方程式を,$k$を用いて表せ.
(2)点Pにおける$C$の法線を$\ell_2$とし,$\ell_2$と$x$軸との交点の$x$座標を$\alpha$とおく.$\alpha$を$k$を用いて表せ.さらに,$\alpha$が最小となる$k$の値および$\alpha$の最小値を求めよ.
(3)$k$を(2)で求めた値とするとき,$C$と$\ell_1$および$x$軸で囲まれた図形の面積を求めよ.
高知大学 国立 高知大学 2010年 第4問
$k$と$l$を実数の定数とし,$x$に関する方程式
\[ x^4-2(k-l)x^2+(k^2+l^2-6k-8l)=0 \quad \cdots\cdots ① \]
を考える.このとき,次の問いに答えよ.

(1)方程式$①$で$k=2,\ l=1$としたときの解を求めよ.
(2)方程式$①$が実数解を持たないための必要十分条件を$k$と$l$で表せ.
(3)方程式$①$の異なる実数解の個数が$3$つであるような実数の組$(k,\ l)$を座標平面上に図示せよ.
(4)方程式$①$の異なる実数解の個数がただ$1$つであるような整数の組$(k,\ l)$をすべて求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。