タグ「方程式」の検索結果

148ページ目:全1641問中1471問~1480問を表示)
島根大学 国立 島根大学 2010年 第3問
次の問いに答えよ.

(1)双曲線$C:x^2-y^2=-1$上の点$(1,\ \sqrt{2})$における接線$\ell$の方程式を求めよ.
(2)$C$と$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに1回転してできる立体の体積を求めよ.
島根大学 国立 島根大学 2010年 第4問
次の問いに答えよ.

(1)$\displaystyle \lim_{x \to \infty} \left( \frac{x^3}{x^2-1}-x \right)$を求めよ.
(2)関数$\displaystyle y=\frac{x^3}{x^2-1}$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
(3)$k$を定数とするとき,方程式$x^3-kx^2+k=0$の異なる実数解の個数を調べよ.
香川大学 国立 香川大学 2010年 第3問
方程式$x^3-1=0$の解のうち,1と異なるものの1つを$\omega$とする.このとき,次の問に答えよ.

(1)$\omega^2+\omega+1=0$を示せ.
(2)$a,\ b$が実数のとき,$(a+b\omega)(a+b\omega^2)$を$a,\ b$を用いて表せ.
(3)$\displaystyle \frac{1}{1+2\omega}$を$c+d\omega \ (c,\ d \text{は実数})$の形で表せ.
(4)$z=m+n\omega \ (m,\ n \text{は自然数})$に対し,$\displaystyle \frac{1}{z}$が$p+q\omega \ (p,\ q \text{は整数})$の形で表されるとき,$z$を求めよ.
香川大学 国立 香川大学 2010年 第2問
$a$を正の実数とし,$f(x)=x^3-3a^2x$とおく.曲線$C:y=f(x)$の原点Oにおける接線を$\ell_1$,原点以外の任意の点P$(p,\ f(p))$における接線を$\ell_2$とし,2つの直線$\ell_1,\ \ell_2$の交点をQとする.このとき,次の問に答えよ.

(1)2直線$\ell_1,\ \ell_2$の方程式を求めよ.
(2)点Qの座標を求めよ.
(3)$\triangle$OPQは曲線$C$によって2つの部分に分けられる.このうち,曲線$C$と線分OPで囲まれた図形の面積を$S$,曲線$C$と2直線$\ell_1,\ \ell_2$で囲まれた図形の面積を$T$とするとき,比$S:T$は一定であることを示せ.
香川大学 国立 香川大学 2010年 第3問
方程式$x^3-1=0$の解のうち,1と異なるものの1つを$\omega$とする.このとき,次の問に答えよ.

(1)$\omega^2+\omega+1=0$を示せ.
(2)$a,\ b$が実数のとき,$(a+b\omega)(a+b\omega^2)$を$a,\ b$を用いて表せ.
(3)$\displaystyle \frac{1}{1+2\omega}$を$c+d\omega \ (c,\ d \text{は実数})$の形で表せ.
(4)$z=m+n\omega \ (m,\ n \text{は自然数})$に対し,$\displaystyle \frac{1}{z}$が$p+q\omega \ (p,\ q \text{は整数})$の形で表されるとき,$z$を求めよ.
山口大学 国立 山口大学 2010年 第2問
$x$についての方程式$2x^3-(3a+1)x^2+2ax+b=0$が異なる2つの実数解をもつときの定数$a,\ b$の条件を求めなさい.
山口大学 国立 山口大学 2010年 第3問
$A,\ A^\prime$をそれぞれ座標平面上の点$(\alpha \cos \theta,\ \alpha \sin \theta)$,$(-\alpha \cos \theta,\ -\alpha \sin \theta)$とし,$f$を行列
\[ \biggl( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \biggr) \]
の表す1次変換とする.$\displaystyle \alpha= \left( \frac{45}{4} \right)^{\frac{1}{6}},\ r=\left( \frac{10}{3} \right)^{\frac{1}{6}},\ \theta=\frac{\pi}{6}$とするとき,次の問いに答えなさい.

(1)2点A,A$^{\prime}$の逆変換$f^{-1}$による像を焦点とし,焦点からの距離の差が2に等しい双曲線$C_1$の方程式を求めなさい.
(2)2点A,A$^\prime$の合成関数$f \circ f$による像を焦点とし,直線$x+2y=0$を漸近線にもつ双曲線$C_2$の方程式を求めなさい.
(3)双曲線$C_1$と$C_2$により囲まれた部分を$x$軸の周りに1回転させてできる立体の体積を求めなさい.
岐阜大学 国立 岐阜大学 2010年 第4問
$xy$平面上で曲線$C:y=\log x$を考える.$p$を正の実数とし,$C$上の点$(p,\ \log p)$における接線を$\ell_p$で表す.以下の問に答えよ.

(1)接線$\ell_p$の方程式を求めよ.
(2)$0<p<1$の範囲で$p$を変化させたとき,接線$\ell_p$と$x$軸,$y$軸で囲まれた図形の面積の最大値を求めよ.
(3)$0<p<1$とする.接線$\ell_p$と$x$軸,曲線$C$で囲まれた図形を$x$軸のまわりに1回転させてできる回転体の体積を求めよ.
三重大学 国立 三重大学 2010年 第2問
次の問いに答えよ.

(1)$p,\ q,\ r,\ s$を整数とする.このとき$p+q \sqrt{2}=r+s\sqrt{2}$が成り立つならば,$p=r$かつ$q=s$となることを示せ.ここで$\sqrt{2}$が無理数であることは使ってよい.
(2)自然数$n$に対し,$(3+2\sqrt{2})^n=a_n+b_n \sqrt{2}$を満たす整数$a_n,\ b_n$が存在することを数学的帰納法により示せ.
(3)$a_n,\ b_n$を(2)のものとする.このときすべての自然数$n$について$(x,\ y)=(a_n,\ b_n)$は方程式$x^2-2y^2=1$の解であることを数学的帰納法により示せ.
三重大学 国立 三重大学 2010年 第2問
次の問いに答えよ.

(1)$p,\ q,\ r,\ s$を整数とする.このとき$p+q \sqrt{2}=r+s\sqrt{2}$が成り立つならば,$p=r$かつ$q=s$となることを示せ.ここで$\sqrt{2}$が無理数であることは使ってよい.
(2)自然数$n$に対し,$(3+2\sqrt{2})^n=a_n+b_n \sqrt{2}$を満たす整数$a_n,\ b_n$が存在することを数学的帰納法により示せ.
(3)$a_n,\ b_n$を(2)のものとする.このときすべての自然数$n$について$(x,\ y)=(a_n,\ b_n)$は方程式$x^2-2y^2=1$の解であることを数学的帰納法により示せ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。