タグ「方程式」の検索結果

138ページ目:全1641問中1371問~1380問を表示)
広島修道大学 私立 広島修道大学 2011年 第2問
関数$f(x)=x^3+ax^2+bx-2$が$x=-1$で極大値$-1$をとるとき,次の各問に答えよ.

(1)$a,\ b$の値を求めよ.また,極小値を求めよ.
(2)関数$y=f(x)$のグラフ上の点$\displaystyle \mathrm{P} \left( \frac{1}{2},\ f \left( \frac{1}{2} \right) \right)$における接線の方程式を求めよ.
広島修道大学 私立 広島修道大学 2011年 第2問
$m$を定数とする.曲線$y=x^3-3x$と直線$y=m$が異なる$3$個の共有点をもち,それらの$x$座標を$x_1,\ x_2,\ x_3$とする.このとき,次の問に答えよ.

(1)$m$の範囲を求めよ.
(2)$S={x_1}^2+{x_2}^2+{x_3}^2$の値を求めよ.
(注意) なお,$3$次方程式$ax^3+bx^2+cx+d=0$($a,\ b,\ c,\ d$は実数,$a \neq 0$)の$3$つの解を$\alpha,\ \beta,\ \gamma$とするとき,
\[ \alpha+\beta+\gamma=-\frac{b}{a},\quad \alpha\beta+\beta\gamma+\gamma\alpha=\frac{c}{a},\quad \alpha\beta\gamma=-\frac{d}{a} \]
であることを用いてもよい.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)円$x^2+y^2=30$上の点$\mathrm{P}(5,\ \sqrt{5})$における接線の方程式は$[$1$]$である.
(2)$\displaystyle \frac{5x+3}{x^2+7x-18}=\frac{a}{x-2}+\frac{b}{x+9}$が$x$についての恒等式であるとき,$a=[$2$]$,$b=[$3$]$である.
(3)$\displaystyle \sin (\alpha+\beta)=\frac{3}{4},\ \sin (\alpha-\beta)=\frac{1}{4}$であるとき,$\sin \alpha \cos \beta$の値は$[$4$]$,$\cos \alpha \sin \beta$の値は$[$5$]$,$\sin^2 \alpha+\cos^2 \beta$の値は$[$6$]$である.
(4)$7$人が円形のテーブルに着席する方法は$[$7$]$通りある.
(5)さいころ$3$個を同時に投げるとき,そのうち同じ目が出るさいころが$2$個だけである確率は,$[$8$]$である.また,さいころ$4$個を同時に投げるとき,少なくとも$2$個のさいころが同じ目である確率は,$[$9$]$である.
(6)連立方程式
\[ \left\{ \begin{array}{l}
\sqrt{x}+2 \log_{10}y=3 \\
x-3 \log_{10}y^2=1 \phantom{e^{[ ]}}
\end{array} \right. \]
を満たす$x,\ y$の値は$x=[$10$]$,$y=[$11$]$である.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)不等式$2x-5 \leqq -x+10$の解は$[$1$]$である.
(2)整式$f(x)$を$x+2$で割ると余りは$-3$,$x-3$で割ると余りは$1$,$x+4$で割ると余りは$2$である.このとき,整式$f(x)$を$(x+2)(x-3)$で割ると余りは$[$2$]$,$(x-3)(x+4)$で割ると余りは$[$3$]$である.
(3)$2$次不等式$\displaystyle x^2+3x-\frac{3}{4} \leqq 1$の解は$[$4$]$であり,連立不等式
\[ \left\{ \begin{array}{l}
x^2+3x-\displaystyle \frac{3}{4} \leqq 1 \\
-x^2+4>0 \phantom{\displaystyle \Biggl( \frac{1}{2} \Biggr)}
\end{array} \right. \]
の解は$[$5$]$である.
(4)放物線$y=-x^2+2x+1$を$C$とし,$C$上の点$\mathrm{P}(2,\ 1)$における接線を$\ell$とすると,直線$\ell$の方程式は$[$6$]$である.また,直線$\ell$と放物線$C$および$y$軸で囲まれた図形の面積は$[$7$]$である.
(5)$16$本のくじの中に,当たりくじが$4$本ある.このくじを$\mathrm{A}$,$\mathrm{B}$の$2$人がこの順に,$1$本ずつ$1$回だけ引き,引いたくじはもとに戻さないものとするとき,$\mathrm{A}$の当たる確率は$[$8$]$となり,$\mathrm{B}$の当たる確率は$[$9$]$となる.
(6)$x$についての不等式$\log_a(3x^2-x-2)>\log_a(x^2+5x-6)$の解は,$a>1$のとき$[$10$]$であり,$0<a<1$のとき$[$11$]$である.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
x-2>0 \\
2x-6 \leqq 0
\end{array} \right. \]
の解は$[$1$]$である.
(2)$x^3-4x^2+5x+2$を$x-4$で割った余りは$[$2$]$である.
(3)$f(x)=x^2+ax+b,\ g(x)=x^2+2ax+b$とする.放物線$y=g(x)$の頂点の座標が$\displaystyle \left( \frac{8}{3},\ \frac{26}{9} \right)$であるとき,$a=[$3$]$,$b=[$4$]$である.また,$2$つの放物線$y=f(x)$,$y=g(x)$および直線$x=\sqrt{3}$で囲まれた図形の面積は$[$5$]$である.
(4)$\triangle \mathrm{ABC}$において$\displaystyle \angle \mathrm{B}=\frac{\pi}{12}$,$\mathrm{BC}=1$,$\mathrm{AB}=2$のとき,$\mathrm{AC}^2=[$6$]$,$\sin^2 A=[$7$]$である.
(5)$2$次方程式$3x^2+2x+15=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2=[$8$]$,$\displaystyle \frac{\alpha+i \beta}{\alpha-i \beta}-\frac{\alpha-i \beta}{\alpha+i \beta}=[$9$]$である.
(6)$1$から$15$までの異なる$15$個の自然数の中から,$4$個の異なる数をとって組を作る.このとき,偶数だけからなる組は$[$10$]$通りあり,偶数を少なくとも$1$個含む組は$[$11$]$通りある.
北海道文教大学 私立 北海道文教大学 2011年 第2問
$x$の$2$次方程式$x^2+(1-2k)x+k^2-2k=0$に解$\alpha,\ \beta (\alpha<\beta)$があるとき,$\alpha<0$かつ$1<\beta$であるような$k$の値の範囲を求めなさい.
北海道文教大学 私立 北海道文教大学 2011年 第1問
次の問いに答えなさい.

(1)$2x^3-16$を因数分解しなさい.
(2)$\sqrt{7-\sqrt{48}}$の二重根号をはずして簡単にしなさい.
(3)不等式$x-4<-3x+2 \leqq x+6$を解きなさい.
(4)$2$次方程式$3x^2-6x+1=0$の実数解の個数を求めなさい.
(5)$\tan \theta=-3 (0^\circ \leqq \theta \leqq 180^\circ)$のとき,$\cos \theta$の値を求めなさい.
(6)$6$人の生徒を$2$人ずつ$3$組に分ける分け方は何通りあるか求めなさい.
北海道医療大学 私立 北海道医療大学 2011年 第1問
以下の問に答えよ.

(1)$2$つの異なる正の数の積が$9$であり,かつ,それらのうち大きい方の$2$倍と小さい方の和が$12$であるという.これらの異なる正の数のうち,大きい方を$x$,小さい方を$y$とするとき,以下の問に答えよ.

(i) $x,\ y$に関する連立方程式を求めよ.
(ii) $x$に関する$2$次方程式を求めよ.
(iii) $x,\ y$の値を求めよ.
\mon[$\tokeishi$] $x^3+y^3$の値を求めよ.

(2)$f(x)=x^2-2ax+4a+5$とする.ただし,$a$は定数とする.

(i) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値を,次の$a$の各範囲においてそれぞれ求めよ.
$① a \leqq -3 \qquad ② -3<a \leqq 2 \qquad ③ a>2$
(ii) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値が$4$であるとき,$a$の値を求めよ.
(iii) $2$次方程式$f(x)=0$が$-3$以上,かつ,$2$以下である異なる$2$つの実数解を持つとき,$a$の値の範囲を求めよ.
北海道医療大学 私立 北海道医療大学 2011年 第3問
関数$f(x)=-x^2+4x-3$と$g(x)=kx-3$がある.ただし,$k$は定数で,$k<4$とする.また,座標平面上の放物線$y=f(x)$と$x$軸の共有点の$x$座標を,$a_1,\ a_2$とし(ただし,$a_1<a_2$とする),放物線$y=f(x)$と直線$y=g(x)$の共有点の$x$座標を$b_1,\ b_2$とする(ただし,$b_1<b_2$とする).以下の問に答えよ.

(1)$a_1,\ a_2,\ b_1,\ b_2$の値を求めよ.
(2)点$(0,\ f(0))$における$y=f(x)$の接線の方程式を求めよ.
(3)次の図形の面積を求めよ.

\mon[$①$] 放物線$y=f(x)$と$x$軸とで囲まれる図形
\mon[$②$] 放物線$y=f(x)$と直線$y=g(x)$とで囲まれる図形

(4)次の定積分の値を求めよ.
\[ ① \int_{b_1}^{a_2} f(x) \, dx \qquad ② \int_{b_2}^{a_2} f(x) \, dx \]
(5)$\displaystyle \int_{b_2}^{a_2} f(x) \, dx=\frac{2}{3}$となるような$k$の値をすべて求めよ.
北海道医療大学 私立 北海道医療大学 2011年 第1問
以下の問に答えよ.

(1)$2$つの異なる正の数の積が$9$であり,かつ,それらのうち大きい方の$2$倍と小さい方の和が$12$であるという.これらの異なる正の数のうち,大きい方を$x$,小さい方を$y$とするとき,以下の問に答えよ.

(i) $x,\ y$に関する連立方程式を求めよ.
(ii) $x$に関する$2$次方程式を求めよ.
(iii) $x,\ y$の値を求めよ.
\mon[$\tokeishi$] $x^3+y^3$の値を求めよ.

(2)$f(x)=x^2-2ax+4a+5$とする.ただし,$a$は定数とする.

(i) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値を,次の$a$の各範囲においてそれぞれ求めよ.
$① a \leqq -3 \qquad ② -3<a \leqq 2 \qquad ③ a>2$
(ii) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値が$4$であるとき,$a$の値を求めよ.
(iii) $2$次方程式$f(x)=0$が$-3$以上,かつ,$2$以下である異なる$2$つの実数解を持つとき,$a$の値の範囲を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。