タグ「方程式」の検索結果

137ページ目:全1641問中1361問~1370問を表示)
学習院大学 私立 学習院大学 2011年 第4問
$a,\ b$を実数とする.$3$次方程式$x^3-3ax^2+a+b=0$が$3$個の相異なる実数解をもち,そのうち$1$個だけが負となるための$a,\ b$の満たす条件を求めよ.また,その条件を満たす点$(a,\ b)$の存在する領域を平面上に図示せよ.
日本女子大学 私立 日本女子大学 2011年 第3問
$\displaystyle f(x)=x^2-\frac{4}{5}$とおく.

(1)$2$次方程式$f(x)=x$の$2$つの解を$\alpha,\ \beta (\alpha<\beta)$とする.$\alpha,\ \beta$の値を求めよ.
(2)$f(f(\alpha))$の値を求めよ.
(3)関数$f(f(x))$を求めよ.
(4)方程式$f(f(x))=x$を解け.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~スに当てはまる数を記入せよ.

(1)点$\mathrm{P}(1,\ 2)$と点$\mathrm{Q}(0,\ -1)$を通り,点$\mathrm{Q}$での接線の傾きが$2$である円の方程式は$(x-[ア])^2+(y-[イ])^2=[ウ]$である.
(2)$\overrightarrow{a}=(-2,\ 2,\ 1)$,$\overrightarrow{b}=(-5,\ 4,\ 3)$のとき,$\overrightarrow{a}$と$2 \overrightarrow{a}-\overrightarrow{b}$のなす角度は$[エ]$である.
(3)$\sin x+\sqrt{3} \cos x-2=0 (0<x<\pi)$を解くと,$x=[オ]$である.
(4)数列$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{1}{5},\ \cdots$に関して,$\displaystyle \frac{17}{30}$はこの数列の第$[カ]$項である.

(5)$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$に対して,$\omega^8$は$[キ]+[ク]i$となる.ただし$i$は虚数単位とし,キ,クは実数とする.
(6)$2$次方程式$x^2+ax+16=0$が整数解を持つような整数$a$のうち最大のものは$[ケ]$である.
(7)サイコロを$4$回振る.連続して偶数があらわれず,かつ連続して奇数もあらわれない確率は$[コ]$である.
(8)$x$が実数を動くとき,関数$f(x)=4^x+4^{-x}-5(2^x+2^{-x})+9$の最小値は,$[サ]$である.
(9)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2+(3a+8)x+4$をみたすとき,定数$a$の値は$[シ]$である.
\mon $6^{30}$は$[ス]$桁の整数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
関西大学 私立 関西大学 2011年 第1問
次の$[ ]$をうめよ.

(1)$\displaystyle \frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4}$より,
\[ \cos \frac{\pi}{12}=\frac{\sqrt{[$①$]}+\sqrt{[$②$]}}{4} \]
である.ただし,$[$①$]$と$[$②$]$は整数であり,$[$①$]<[$②$]$とする.
(2)$0<\theta<\pi$かつ
\[ \cos \theta=\frac{\sqrt{[$①$]}-\sqrt{[$②$]}}{4} \]
であるとき,$\theta=[$③$]$である.
(3)適当な整数$a,\ b$に対し,$\displaystyle \cos \frac{\pi}{12}$は$4$次方程式
\[ ax^4+bx^2+1=0 \]
の解となる.このとき,$a=[$④$]$,$b=[$⑤$]$である.
関西大学 私立 関西大学 2011年 第2問
$3$次関数$f(x)=x^3+3x^2-9x-2$について,次の問いに答えよ.

(1)関数$y=f(x)$の極値を調べ,グラフをかけ.
(2)関数$y=f(x)$のグラフ上の点$(a,\ f(a))$における接線と,点$(a+2,\ f(a+2))$における接線が,平行であるような$a$の値を求めよ.また,このときの点$(a,\ f(a))$における接線の方程式を求めよ.
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)円$x^2+2x+y^2-6y-6=0$の半径は$[ア]$であり,中心の座標は$[イ]$である.

(2)$\displaystyle 2 \log_84+\log_3 \sqrt{15}-\frac{1}{\log_59}$を計算すると$[ウ]$である.

(3)$0 \leqq x<2\pi$とする.方程式$\cos 2x-5 \cos x+3=0$を解くと,$x=[エ],\ [オ]$である.
(4)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字から同じ数字を繰り返し使わずに作れる$3$桁の偶数は全部で$[カ]$個ある.
神奈川大学 私立 神奈川大学 2011年 第2問
$3$次関数$f(x)=x^3-20x+16$について,以下の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)$y=f(x)$上の点$(a,\ f(a))$における接線の方程式を求めよ.
(3)$(2)$で求めた接線のうち,原点を通るものを求めよ.
(4)$y=f(x)$の接線で,$(3)$で求めた接線と傾きの等しいものが,もう$1$つある.その接線の方程式を求めよ.
神奈川大学 私立 神奈川大学 2011年 第2問
曲線$\displaystyle C:y=\frac{1}{x} (x>0)$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$における接線を$\ell$とする.接線$\ell$と$x$軸との交点を$\mathrm{Q}$とする.さらに,$\mathrm{Q}$を通り$x$軸に垂直な直線と曲線$C$との交点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸および$y$軸とで囲まれた図形の面積を求めよ.
(3)曲線$C$と接線$\ell$および線分$\mathrm{QR}$とで囲まれた図形の面積を求めよ.
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)不等式$|4x-3| \leqq -x+7$を解くと$[$(\mathrm{a])$}$である.
(2)$2$つのベクトル$\overrightarrow{a}=(3,\ 4)$,$\overrightarrow{b}=(-1,\ 2)$に対して,$\overrightarrow{a}+k \overrightarrow{b}$と$\overrightarrow{a}-k \overrightarrow{b}$が垂直であるとき,正の定数$k$の値は$[$(\mathrm{b])$}$である.
(3)数列
\[ \frac{1}{\sqrt{1}+\sqrt{3}},\ \frac{1}{\sqrt{3}+\sqrt{5}},\ \frac{1}{\sqrt{5}+\sqrt{7}},\ \cdots,\ \frac{1}{\sqrt{2n-1}+\sqrt{2n+1}},\ \cdots \]
の第$24$項までの和は$[$(\mathrm{c])$}$である.
(4)方程式$\log_2x=2 \log_x2-1$を解くと,$x=[$(\mathrm{d])$}$である.ただし,$x \neq 2$とする.
(5)$1$個のさいころを$2$回投げるとき,$1$回目に出る目の数と$2$回目に出る目の数のうち小さくない方を$X$とする.$X=4$となる確率は$[$(\mathrm{e])$}$である.
(6)関数$f(x)=x^2-x^3$は$x=[$(\mathrm{f])$}$で極大値$[$(\mathrm{g])$}$をとる.
広島修道大学 私立 広島修道大学 2011年 第1問
次の各問に答えよ.

(1)女子$5$人,男子$3$人が横$1$列に並ぶとき,女子が両端にくるような並び方は何通りあるか.また,女子$5$人が続いて並ぶような並び方は何通りあるか.
(2)放物線$y=x^2+ax+b$は$2$点$\mathrm{A}(0,\ -3)$,$\mathrm{B}(2,\ 5)$を通る.このとき,この放物線と$2$点$\mathrm{B}$,$\mathrm{C}(-2,\ -3)$を通る直線で囲まれた図形の面積を求めよ.
(3)$0 \leqq x \leqq \pi$のとき,方程式$8 \cos^4 x-16 \cos^2 x-6 \sin^2 x+9=0$を解け.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。