タグ「方程式」の検索結果

122ページ目:全1641問中1211問~1220問を表示)
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第4問
座標平面において,原点$\mathrm{O}$を中心とし半径が$1$の円$C$を考える.円$C$上に,点$\mathrm{P} \displaystyle \left( -\frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$,点$\mathrm{Q}(0,\ 1)$,点$\mathrm{R} \displaystyle \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$をとる.以下の問いに答えよ.

(1)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る放物線の方程式を求めよ.
(2)(1)で求めた放物線と,線分$\mathrm{OP}$,線分$\mathrm{OR}$で囲まれた部分の面積を求めよ.
(3)(2)で求めた部分の面積は,点$\mathrm{Q}$が弧の上にある扇形$\mathrm{OPR}$の面積より小さい.このことを用いて,円周率$\pi$に対して$\pi > 3.13$が成り立つことを示せ.ただし,$\sqrt{3}<1.733$であることを用いてよい.
兵庫県立大学 公立 兵庫県立大学 2012年 第1問
$f(x)=x^3-2x^2-x+1$とする.

(1)方程式$f(x)=0$は$-1<\alpha<0$,$0<\beta<1$,$1<\gamma$をみたす$3$個の実数解$\alpha,\ \beta,\ \gamma$をもつことを示せ.
(2)点$(0,\ 1)$における$y=f(x)$の接線を$\ell$とする.曲線$y=f(x)$と$\ell$とで囲まれた部分の面積を求めよ.
九州歯科大学 公立 九州歯科大学 2012年 第2問
$A,\ B,\ C$を$A>B>C>0$をみたす定数とする.$3$つの$2$次方程式
\[ Ax^2-2Bx+C=0,\quad -2Bx^2+Cx+A=0,\quad Cx^2+Ax-2B=0 \]
が共通の実数解$\gamma$をもつとき,次の問いに答えよ.

(1)$B$を$A$と$C$を用いて表せ.
(2)$Ax^2-2Bx+C=0$の$2$つの解を$\alpha_1,\ \beta_1$とする.$\alpha_1>\beta_1$とするとき,$\alpha_1$の値を求めよ.また,$\beta_1$を$A$と$C$を用いて表せ.
(3)$Cx^2+Ax-2B=0$の$2$つの解を$\alpha_2,\ \beta_2$とする.$\alpha_2>\beta_2$とするとき,$\alpha_2$の値を求めよ.また,$\beta_2$を$A$と$C$を用いて表せ.
(4)$-2Bx^2+Cx+A=0$の$\gamma$と異なる解$\theta$を$A$と$C$を用いて表せ.
名古屋市立大学 公立 名古屋市立大学 2012年 第2問
放物線$y=x^2$上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$がある.ただし,$a>b$とする.次の問いに答えよ.

(1)$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線の方程式を$a,\ b$を用いて表せ.
(2)直線$\mathrm{AB}$と放物線$y=x^2$で囲まれる領域の面積$S$が$\displaystyle S=\frac{(a-b)^3}{6}$で表されることを示せ.
(3)$2$点$\mathrm{A}$,$\mathrm{B}$が$\displaystyle S=\frac{4}{3}$となるように放物線上を動くとき,線分$\mathrm{AB}$の長さの最小値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2012年 第4問
曲線$C:y=(\log x-2 \log 2) \log x$について次の問いに答えよ.

(1)関数の増減と凹凸を調べ,曲線$C$の概形をかけ.曲線$C$が$x$軸および$y$軸と共有点がある場合にはその点の座標を明記すること.また,極値を表す点や変曲点がある場合にはその座標を明記すること.
(2)変曲点における接線と法線の方程式を求めよ.また,接線と$x$軸との交点$\mathrm{P}$および法線と$x$軸との交点$\mathrm{Q}$の座標を求めよ.
(3)原点を$\mathrm{O}$とし,変曲点から$x$軸に下ろした垂線が$x$軸と交わる点を$\mathrm{R}$とする.線分$\mathrm{OP}$の長さと線分$\mathrm{QR}$の長さの積を求めよ.
(4)曲線$C$と$x$軸で囲まれる図形の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2012年 第4問
$xy$平面上において,原点$\mathrm{O}$を中心とする正六角形$\mathrm{ABCDEF}$の$3$つの頂点の座標が,$\mathrm{A}(0,\ 2)$,$\mathrm{B}(\sqrt{3},\ 1)$,$\mathrm{C}(\sqrt{3},\ -1)$であるとき,次の問いに答えよ.

(1)辺$\mathrm{CD}$の中点を$\mathrm{L}$,線分$\mathrm{AL}$の中点を$\mathrm{M}$とし,直線$\mathrm{FM}$と辺$\mathrm{BC}$の交点を$\mathrm{N}$とする.$\mathrm{FM}:\mathrm{MN}$,$\mathrm{BN}:\mathrm{NC}$の比の値をそれぞれ求めよ.
(2)$|\overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{FP}}|=|\overrightarrow{\mathrm{BF}}|$を満たす点$\mathrm{P}$の描く図形の方程式を求めよ.
(3)$\mathrm{BF}$上の点$\mathrm{Q}(q,\ 1)$が$-\sqrt{3} \leqq q \leqq \sqrt{3}$を満たす任意の点であるとき,$\triangle \mathrm{QCE}$の垂心$\mathrm{H}$の描く図形の方程式を求めよ.
福岡女子大学 公立 福岡女子大学 2012年 第1問
$a$を定数とし,$f(x)=x^5-5x^3+ax$とする.方程式$f(x)=0$は異なる$5$つの実数解をもち,これらを$x_1<x_2<x_3<x_4<x_5$とする.この$5$つの解は等差数列をなしており,その総和は$0$である.次の問に答えなさい.

(1)$x_3=0$を示せ.
(2)$a$の値を求めよ.
(3)$x_1,\ x_2,\ x_4,\ x_5$を求めよ.
宮城大学 公立 宮城大学 2012年 第1問
次の空欄$[ア]$から$[カ]$にあてはまる数や式を書きなさい.

$2$つの曲線
\[ C:y=x^3+ax^2 \quad \text{と} \quad D:y=a(x-b)^2 \quad (ab \neq 0) \]
について,点$\mathrm{P}$を$C$と$D$の交点とし,$\mathrm{P}$の$x$座標を$p$とする.
$\mathrm{P}$における$C$の接線の方程式は
\[ y=\left( [ア] \right) x+[イ] \]
で,$\mathrm{P}$における$D$の接線の方程式は
\[ y=\left( [ウ] \right) x+[エ] \]
である.
また,$C$と$D$が$\mathrm{P}$で接するとき,$b,\ p$を$a$を用いて表せば,
\[ b=[オ],\quad p=[カ] \]
となる.
富山県立大学 公立 富山県立大学 2012年 第1問
$m_1,\ m_2,\ p$は定数で$m_1<m_2$とする.放物線$C:y=x^2-x$が$2$つの直線$\ell_1:y=m_1x-1$,$\ell_2:y=m_2x-1$に接するとき,次の問いに答えよ.

(1)$m_1,\ m_2$の値を求めよ.
(2)$C$上の点$\mathrm{P}(p,\ p^2-p)$を通る$C$の接線$\ell$の方程式を$y=ax+b (m_1<a<m_2)$とする.$p$を用いて,定数$a,\ b$を表せ.
(3)$\ell$と$\ell_1$の共有点を$\mathrm{A}(x_1,\ y_1)$,$\ell$と$\ell_2$の共有点を$\mathrm{B}(x_2,\ y_2)$とする.線分$\mathrm{AB}$の長さが最小となるときの$p$の値を求めよ.
釧路公立大学 公立 釧路公立大学 2012年 第3問
以下の各問に答えよ.

(1)次の不等式を解け.$2 \log_{\frac{1}{4}} (4x+1) \geqq 1+\log_{\frac{1}{2}} (11-x)$
(2)以下の問に答えよ.

(i) 次の等式を満たす関数$f(x)$を求めよ.$\displaystyle f(x)=x^2-2x+3 \int_0^1 f(t) \, dt$
(ii) $(ⅰ)$で求めた$f(x)$に点$\displaystyle \left( \frac{3}{2},\ -2 \right)$から引いた接線の方程式と,接点の座標を求めよ.
(iii) $(ⅰ)$,$(ⅱ)$で求めた関数$f(x)$と$2$つの接線で囲まれた図形の面積を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。