タグ「方程式」の検索結果

113ページ目:全1641問中1121問~1130問を表示)
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の式を展開せよ.
\[ (x+1)(x-1)(2x+3)(3x-1) \]
(2)$m$は自然数である.$x$についての$2$次方程式
\[ x^2-2mx+6m-8=0 \]
が,実数解を持たないとき,$m$の値を求めよ.
(3)$0^\circ \leqq \theta \leqq 360^\circ$において,次の関数の最大値と最小値を求めよ.
\[ y=2 \sin^2 \theta+\cos \theta-2 \]
(4)次の定積分の値を求めよ.
\[ \int_1^2 (3x^2+4x+2) \, dx \]
(5)大小$2$つのさいころを投げ,出た目の数をそれぞれ$a,\ b$とするとき,$|a-b| \geqq 3$となる確率を求めよ.
(6)半径$r$の球の体積$\displaystyle V=\frac{4 \pi r^3}{3}$を,$r$で微分して,導関数$V^\prime$を求めよ.これは,半径$r$の球の何を表しているか.
中央大学 私立 中央大学 2012年 第2問
$2$次関数や$3$次関数$y=f(x)$から新しい関数$F(x)$を次のように作る.

実数$x$に対して,$f(\alpha)=f(x)$を満たす最大の$\alpha$をとり
\[ F(x)=\alpha-x \]
と定める.

例えば,$f(x)=x^2$の場合,実数$x$に対して$\alpha$の方程式$f(\alpha)=f(x)$は$\alpha^2=x^2$であり,$\alpha=\pm x$となる.したがって,その$2$つの$\alpha$のうち大きい方をとれば次を得る.

$x<0$のとき$\alpha=-x$により$F(x)=\alpha-x=-2x=2 |x|$
$x \geqq 0$のとき$\alpha=x$により$F(x)=\alpha-x=0$

以下では$f(x)=x^3-3b^2x (b>0)$に対して,上の操作で定めた関数$F(x)$を考える.

(1)$F(-b),\ F(0),\ F(b)$の値を求めよ.
(2)$F(x)=0$となる$x$の範囲を求めよ.また$F(x)>0$となる$x$の範囲を求めよ.
(3)$F(x)>0$となる$x$に対し,$f(\alpha)=f(x)$を満たす最大の$\alpha$を$x$の式で表せ.
(4)関数$y=F(x)$を求め,そのグラフの概形をかけ.また$F(x)$の最大値を求めよ.
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の$3$次式を$1$次式の積に因数分解せよ.
\[ x^3-2x^2-5x+6 \]
(2)$x$についての$2$次方程式
\[ x^2-2kx+3k-2=0 \]
が,相異なる$2$つの実数解を持つような,定数$k$の値の範囲を求めよ.
(3)$x$の変域が$-1 \leqq x \leqq 2$であるときの$2$次関数
\[ y=2x^2-3x+1 \]
の最大値と最小値を求めよ.
(4)$5$個の数字$1,\ 2,\ 3,\ 4,\ 5$を一回ずつ使って$4$桁の数を作る.このとき$3215$以上の数はいくつあるか求めよ.
(5)$2^{1000}$は何桁の数になるか.ただし,$\log_{10}2=0.30103$とする.
(6)図のような三角形$\mathrm{ABC}$において,$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=5:6:4$である.このとき$\sin A:\sin B:\sin C$を整数比で表せ.

(図は省略)
東京理科大学 私立 東京理科大学 2012年 第1問
$a,\ b$を実数として,$x$の$4$次関数$f(x)=x^4-ax^2+bx$を考える.次の問いに答えよ.

(1)$s,\ t$を異なる実数とする.曲線$y=f(x)$の,$x=s$における接線の傾きと,$x=t$における接線の傾きが等しいとき,$a$を$s$と$t$を用いて表せ.
(2)曲線$y=f(x)$が異なる$2$点で共通の接線$\ell$をもつとし,その接点の$x$座標の一つを$s$とする.

(i) $a$を$s$を用いて表せ.
(ii) $\ell$の方程式を,$a$と$b$を用いて表せ.

(3)関数$f(x)$が極大値をもつための必要十分条件を$a$と$b$に関する不等式で与えよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ヒ]$までに当てはまる数字$0$~$9$を求めよ.ただし,分数は既約分数として表しなさい.

(1)$a$を実数とするとき,方程式
\[ |x|-|x^2-4|+|x+6|=a \]
を考える.この方程式の実数解が$2$個であるための条件は
\[ a<[ア],\quad [イ]<a<[ウ][エ] \]
であり,実数解を持たないための条件は
\[ a>[オ][カ] \]
である.また,次の不等式
\[ |x|-|x^2-4|+|x+6|>2 \]
には,正の整数解が$[キ]$個,負の整数解が$[ク]$個ある.
(2)空間内に点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,それぞれの大きさと内積が
\[ \begin{array}{l}
|\overrightarrow{a}|=9,\quad |\overrightarrow{b}|=12,\quad |\overrightarrow{c}|=\sqrt{42}, \\ \\
\overrightarrow{a} \cdot \overrightarrow{b}=72,\quad \overrightarrow{a} \cdot \overrightarrow{c}=57,\quad \overrightarrow{b} \cdot \overrightarrow{c}=48
\end{array} \]
であるとする.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角は$\displaystyle \frac{1}{[ケ]} \pi$であり,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[コ][サ]}{[シ]}$である.ベクトル
\[ \overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直交するのは$\displaystyle s=\frac{[ス]}{[セ]}$,$\displaystyle t=\frac{[ソ]}{[タ]}$のときである.したがって,四面体$\mathrm{OABC}$の体積は$[チ][ツ]$である.
(3)三角関数についての等式
\[ [テ] \cos^3 \theta-[ト] \cos \theta-\cos 3\theta=0 \]
を利用して,$t$に関する$3$次方程式
\[ [テ]t^3-[ト]t-\frac{\sqrt{2}}{2}=0 \]
を解いたとき,$\displaystyle \cos \frac{3}{4} \pi$が解の$1$つであることがわかる.したがって,この方程式の残りの$2$つの解は
\[ \cos \frac{[ナ]}{12} \pi=\frac{\sqrt{[ニ]}+\sqrt{[ヌ]}}{[ネ]} \]

\[ \cos \frac{[ノ]}{12} \pi=\frac{\sqrt{[ニ]}-\sqrt{[ヌ]}}{[ネ]} \]
となる.これより,
\[ \tan \frac{[ナ]}{12} \pi=[ハ]-\sqrt{[ヒ]} \]
となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
以下の文章の空欄に適切な数,式または行列を入れて文章を完成させなさい.ただし$(2)$において,適切な行列が複数個ある場合は,それらをすべて記入しなさい.

(1)$a_1=1$,$a_2=4$,$a_{n+2}=-a_{n+1}+2a_n (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[あ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換により点$\mathrm{B}(1,\ 1)$と点$\mathrm{C}(1,\ 0)$はそれぞれ点$\mathrm{B}^\prime$と点$\mathrm{C}^\prime$に移されるとする.また$\mathrm{O}(0,\ 0)$を原点とする.$\overrightarrow{\mathrm{OB}^\prime}=2 \overrightarrow{\mathrm{OB}}$,かつ$\triangle \mathrm{OB}^\prime \mathrm{C}^\prime$が正三角形となるような行列$A$をすべて求めると$A=[い]$である.
(3)媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\displaystyle \frac{e^t+3e^{-t}}{2} \\ \\
y=e^t-2e^{-t}
\end{array} \right. \]
と表される曲線$C$の方程式は
\[ [う]x^2+[え]xy+[お]y^2=25 \]
である.
また曲線$C$の接線の傾きは,$t=[か]$に対応する点において$-2$となる.
(4)$\alpha>1$を実数とする.$0 \leqq x \leqq 1$を定義域とする関数$f(x)=x-x^\alpha$が最大値をとる点を$x(\alpha)$とすると$x(\alpha)=[き]$である.また$\displaystyle \lim_{\alpha \to 1+0} x(\alpha)=[く]$である.
東京理科大学 私立 東京理科大学 2012年 第2問
$a$を正の定数とし,座標平面において放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$を考える.ただし,$t>0$とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸の交点を$\mathrm{R}$とする.$x$軸上の点$\mathrm{Q}$を,$\mathrm{RP}=\mathrm{RQ}$を満たし,その$x$座標が$\mathrm{R}$の$x$座標より大きいものとする.

(1)点$\mathrm{P}$を通り$\ell$と直交する直線の方程式を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\ell$と点$\mathrm{P}$において接し$x$軸とも接する円で,中心が第$1$象限にあるものを考える.この円の中心の座標を$(q,\ r)$とするとき,$q,\ r$を$t$と$a$を用いて表せ.
(4)$(3)$の$q,\ r$に対して,$t$が$0$に限りなく近づくときの,$\displaystyle \frac{q}{t},\ \frac{r}{t^2},\ \frac{r}{q^2}$の極限値をそれぞれ求めよ.
日本女子大学 私立 日本女子大学 2012年 第2問
$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,方程式
\[ \log_{\frac{1}{2}} \cos \theta-\log_{\frac{1}{4}} \sin \theta-\frac{3}{2} \log_2 \tan \theta=\frac{1}{2} (1-\log_23) \]
を満たす$\theta$の値を求めよ.
東京理科大学 私立 東京理科大学 2012年 第2問
$s,\ t$を実数とし,$0<s<1$とする.座標空間内の$3$点
\[ \begin{array}{l}
\mathrm{P}((2-s)+s \cos t,\ 0,\ (2-s)+s \sin t), \\ \\
\displaystyle \mathrm{Q} \left( \frac{2-s}{\sqrt{2}}+\frac{s}{\sqrt{2}} \cos t,\ \frac{2-s}{\sqrt{2}}+\frac{s}{\sqrt{2}} \cos t,\ (2-s)+s \sin t \right), \\ \\
\mathrm{R}(0,\ 0,\ (2-s)+s \sin t)
\end{array} \]
について,次の問いに答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を含む平面の方程式を求めよ.
(2)$\mathrm{RP}=\mathrm{RQ}$を示せ.

点$\mathrm{Q}$は,点$\mathrm{R}$を中心とし$\mathrm{RP}$を半径とする円周上に存在する.このとき,弦$\mathrm{PQ}$に対する弧$\mathrm{PQ}$と,半径$\mathrm{RP}$および半径$\mathrm{RQ}$で囲まれる扇形を$C$とする.ただし,$C$の中心角$\angle \mathrm{PRQ}$は$\pi$以下とする.

(3)$C$の面積を$s$と$t$を用いて表せ.
(4)$t$が$\displaystyle -\frac{\pi}{2} \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,$\mathrm{R}$の$z$座標の動く範囲を$s$を用いて表せ.
(5)$t$が$\displaystyle -\frac{\pi}{2} \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,扇形$C$が通過する部分の体積$V_1$を$s$を用いて表せ.
(6)$t$が$\displaystyle \frac{\pi}{2} \leqq t \leqq \frac{3\pi}{2}$の範囲を動くとき,扇形$C$が通過する部分の体積$V_2$を$s$を用いて表せ.
(7)上の$(5)$,$(6)$の$V_1$,$V_2$に対して,$s$が$\displaystyle \frac{1}{4} \leqq s \leqq \frac{1}{2}$の範囲を動くときの$V_1-V_2$の最大値とそのときの$s$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2012年 第1問
座標平面上において,原点$\mathrm{O}$と点$(6,\ 0)$からの距離の和が$10$である楕円を考える.

(1)この楕円の方程式は$\displaystyle \frac{(x-[ア])^2}{[イウ]}+\frac{y^2}{[エオ]}=1$である.

(2)この楕円と$x$軸,$y$軸との$4$個の交点を頂点とする四角形の面積は$[カキ]$である.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。