タグ「方程式」の検索結果

108ページ目:全1641問中1071問~1080問を表示)
明治大学 私立 明治大学 2012年 第2問
以下の$[ ]$にあてはまる値を答えよ.
\[ f(x) = \frac{1}{2}x^2 -3x -1+|x^2-2x-3| \]
とおく.

(1)不等式$x^2-2x-3 \leqq 0$を解くと$[あ]$となる.
(2)方程式$f(x)=0$の実数解をすべて求めると$[い]$となる.
(3)関数$y=f(x)$の定義域を$-2 \leqq x \leqq 5$とするとき,値域は$[う]$となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
$2$次方程式$x^2+ax+b=0$の係数$a,\ b$を次のようにして決める.\\
$1$から$6$までの目のある正$6$面体のサイコロを$2$回投げる.$1$回目に出た目の数を$a$,$2$回目に出た目の数を$b$とする.このとき$2$次方程式の解が実数である確率は
\[ \frac{[(1)][(2)]}{[(3)][(4)]} \]
である.\\
\quad 次に$m$を自然数として,$1$から$4m$まで書かれた$4m$枚のカードから無作為に$1$枚のカードを選び,書かれた数の正の平方根を$a$とする.選んだカードをもとに戻し,再び無作為に$1$枚のカードを選び,書かれた数を$b$とする.このとき$x^2+ax+b=0$の解が実数である確率は
\[ \frac{[(5)]m-[(6)]}{[(7)][(8)]m} \]
である.
東京理科大学 私立 東京理科大学 2012年 第1問
$a=\sqrt{7}+\sqrt{5},\ b=\sqrt{7}-\sqrt{5}$とおく.

(1)$\displaystyle \frac{b}{a}=[ア]-\sqrt{[イウ]}$,$\displaystyle \frac{a}{b} = [エ]+\sqrt{[オカ]}$である.

(2)$\displaystyle \frac{b}{a},\ \frac{a}{b}$を解にもつ$2$次方程式は$x^2-[キク]x+[ケ]=0$と書くことができる.
(3)$A=\left( \begin{array}{cc}
a & -b \\
\displaystyle\frac{1}{a} & \displaystyle\frac{1}{b}
\end{array} \right)$とおくとき,$A$の逆行列$A^{-1}$は
\[ A^{-1}=\left( \begin{array}{rr}
\displaystyle\frac{\sqrt{7}}{[コサ]}+\frac{\sqrt{5}}{[シス]} & \displaystyle\frac{\sqrt{7}}{[セソ]}-\frac{\sqrt{5}}{[タチ]} \\ \\
-\displaystyle\frac{\sqrt{7}}{[ツテ]}+\frac{\sqrt{5}}{[トナ]} & \displaystyle\frac{\sqrt{7}}{[ニヌ]}+\frac{\sqrt{5}}{[ネノ]}
\end{array} \right) \]
明治大学 私立 明治大学 2012年 第3問
$xy$平面上の曲線$C:y=x^2$上に,原点$\mathrm{O}$と異なる$2$つの点$\mathrm{P}(s,\ s^2)$,$\mathrm{Q}(t,\ t^2)$がある.ただし,$s \neq t$とする.曲線$C$上の$\mathrm{P}$,$\mathrm{Q}$におけるそれぞれの接線を$\ell_1$,$\ell_2$とし,$\ell_1$,$\ell_2$の$x$軸との交点をそれぞれ$\mathrm{P}_0$,$\mathrm{Q}_0$とする.このとき,次の各設問の$[ ]$にふさわしい解を求め,解答欄に記入せよ.

(1)$\mathrm{P}_0$の座標は$\left( [ ],\ [ ] \right)$となり,$\mathrm{Q}_0$の座標は$\left( [ ],\ [ ] \right)$となる.
(2)$\ell_1$と$\ell_2$の交点$\mathrm{R}$の座標は$\left( [ ],\ [ ] \right)$である.
(3)$\mathrm{P}_0$,$\mathrm{Q}_0$,$\mathrm{R}$を通る円の方程式を
\[ (x-a)^2+(y-b)^2=c^2 \quad \cdots\cdots① \]
とおく.円の方程式$①$が$\mathrm{P}_0$,$\mathrm{Q}_0$を通ることと,$\mathrm{P}_0 \neq \mathrm{Q}_0$であることから
\[ s+t=[ ] \quad \cdots\cdots② \]
となる.
(4)円の方程式$①$が$\mathrm{P}_0$と$\mathrm{R}$を通ることと,$②$と$s \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots③ \]
となる.同じく$\mathrm{Q}_0$と$\mathrm{R}$を通ることと,$②$と$t \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots④ \]
となる.$②$,$③$,$④$より,$a \neq 0$のとき
\[ st = \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑤ \]
を得る.同じく$a=0$のときも$⑤$が成り立つことがわかる.
(5)円の方程式$①$が$\mathrm{R}$を通ることを$a,\ b,\ c$を用いて表わすと
\[ \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑥ \]
となる.このことは,$①$が定点$\left( [ ],\ [ ] \right)$を通ることを意味する.
明治大学 私立 明治大学 2012年 第2問
次の空欄$[ア]$から$[オ]$に当てはまるものをそれぞれ入れよ.ただし,$e$は自然対数の底である.必要ならば$\displaystyle \lim_{x \to \infty} \frac{x}{e^x}=0.\ \lim_{x \to \infty} \frac{x^2}{e^x}=0$を用いてもよい.

関数$\displaystyle f(x) = \frac{(x+1)^2}{e^x}$を考える.

(1)$f(x)$は$x=[ア]$において最小値[イ]をとる.
(2)$k$を定数とする.$x$についての方程式$f(x) = k$が二つの実数解をもつとき,$k=[ウ]$である.
(3)曲線$y=f(x)$の変曲点の$x$座標は
$[エ]-\sqrt{[オ]}, \quad [エ]+\sqrt{[オ]}$
である.
青森中央学院大学 私立 青森中央学院大学 2012年 第5問
方程式$\log_2(x-5) = \log_4(x-3)$を解け.
上智大学 私立 上智大学 2012年 第2問
$a$を実数とし,放物線$C:y=x^2-2ax+4a$を考える.

(1)$C$が直線$y=-6x$と接するのは,$a=[タ]$または$a=[チ]$のときである.ただし,$[タ]<[チ]$とする.
(2)$a$がすべての実数を動くとき,$C$の頂点の軌跡の方程式は
\[ y=[ツ]x^2+[テ]x+[ト] \]
である.
(3)$C$が点$(x,\ y)$を通るような$a$が存在するための必要十分条件は
\[ \bigg(x \quad [あ] \quad [ナ] \bigg) \quad [い] \quad \bigg(y \quad [う] \quad [ニ] \bigg) \]
である.
(4)点$(3,\ -1)$を通る$C$の接線が存在するための必要十分条件は
\[ a \quad [え] \quad [ヌ] \]
である.
\begin{screen}
$[あ],\ [う],\ [え]$の選択肢: \\
$(a) < \qquad (b) \leqq \qquad (c) > \qquad (d) \geqq \qquad (e) = \qquad (f) \neq$ \\
$[い]$の選択肢: \\
$(a) $かつ \qquad $(b) $または
\end{screen}
立教大学 私立 立教大学 2012年 第1問
次の空欄$[ア]$から$[コ]$に当てはまる数または式を記入せよ.

(1)方程式$(x+3)|x-4|+2x+6=0$の解は$x=[ア]$である.
(2)曲線$y=x^3-3x^2+1$上の点$(1,\ -1)$における接線が,放物線$y=ax^2+a$と接するとき,$a=[イ]$である.ただし,$a>0$とする.
(3)$\displaystyle\frac{1}{2-i}+\frac{1}{3+i}=a+bi$となる実数$a,\ b$を求めると,$a=[ウ]$,$b=[エ]$である.ただし,$i$は虚数単位とする.
(4)白玉$4$個と赤玉$2$個が入っている袋がある.この袋から同時に玉を$3$個とりだすとき,白玉の数がちょうど$2$個である確率は$[オ]$である.
(5)$\displaystyle\tan \theta=\frac{1}{2}$のとき,$\displaystyle\frac{\sin \theta}{1+\cos \theta} = [カ]$である.ただし,$\displaystyle 0 < \theta < \frac{\pi}{2}$とする.
(6)実数$x$が$x>1$の範囲を動くとき,$\log_3 x + 3\log_x 3$の最小値は$[キ]$である.
(7)関数$f(x)$が実数$a$に対して,等式$\displaystyle\int_a^x f(t)\, dt = x^3+x^2-6x-a^2-9$を満たすとき,$a$の値は$[ク]$である.
(8)$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に点$\mathrm{D}$があり,$\triangle \mathrm{ABD}$と$\triangle \mathrm{ACD}$の面積の比が$3:2$であるとき,$\overrightarrow{\mathrm{AD}} = [ケ]\overrightarrow{\mathrm{AB}}+[コ]\overrightarrow{\mathrm{AC}}$である.
青森中央学院大学 私立 青森中央学院大学 2012年 第6問
方程式$25^x-50\cdot 5^{x-2}+1=0$を解け.
立教大学 私立 立教大学 2012年 第2問
関数$\displaystyle y=\frac{1}{x}$のグラフの$x>0$の部分を曲線$C$とする.実数$t$は$0<t<1$をみたすものとし,$C$上に点P$\displaystyle \left(t,\ \frac{1}{t} \right)$をとる.このとき,次の問(1)~(5)に答えよ.

(1)曲線$C$上の点$\mathrm{A}(1,\ 1)$における接線$\ell$の方程式を求めよ.
(2)点$\mathrm{P}$を通り直線$\ell$と平行な直線を$m$とし,直線$m$と曲線$C$の共有点で点$\mathrm{P}$と異なる点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.
(3)原点を$\mathrm{O}$とし,$2$つの線分$\mathrm{OP}$,$\mathrm{OQ}$および曲線$C$で囲まれた部分の面積を$S$とする.面積$S$を$t$で表せ.
(4)点$\mathrm{P}$を通り$y$軸に平行な直線,点$\mathrm{Q}$を通り$y$軸に平行な直線,曲線$C$,および$x$軸で囲まれた部分が,$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.体積$V$を$t$で表せ.
(5)$\displaystyle \lim_{t \to 1-0} \frac{S}{V}$を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。