タグ「方程式」の検索結果

106ページ目:全1641問中1051問~1060問を表示)
宮城教育大学 国立 宮城教育大学 2012年 第1問
関数$f(x)=ax^3-(a+3)x+a+3$について,次の問いに答えよ.ただし$a$は$0$でない実数とする.

(1)$f(x)$の導関数を$f^\prime(x)$とする.$x$の方程式$f^\prime(x)=0$が実数解をもつような$a$の範囲を求め,またそのときの実数解をすべて求めよ.
(2)$x$の方程式$f(x)=0$が$3$個の異なる実数解をもつような$a$の範囲を求めよ.
山形大学 国立 山形大学 2012年 第4問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
福井大学 国立 福井大学 2012年 第4問
$xy$平面上に,曲線$C_1:x=t-\sin t,\ y=1-\cos t \ (0 \leqq t \leqq 2\pi)$がある.$0<t<2\pi$をみたす$t$に対し,$C_1$上の点$\mathrm{P}_1(t-\sin t,\ 1-\cos t)$における$C_1$の法線を$m$とおき,$x$軸と$m$の交点を$\mathrm{M}$とし,$\mathrm{M}$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点になるように点$\mathrm{P}_2$をとる.このとき,以下の問いに答えよ.
(図は省略)

(1)直線$m$の方程式を求めよ.また,$\mathrm{M},\ \mathrm{P}_2$の座標を$t$を用いて表せ.さらに,$\mathrm{P}_2$の$x$座標を$f(t)$とおくと,関数$f(t)$は,$0<t<2\pi$で増加することを示せ.
(2)$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$\mathrm{P}_2$の軌跡を$C_2$とするとき,$x$軸と曲線$C_2$で囲まれた図形の面積を求めよ.ただし,$t=0,\ 2\pi$に対しては,点$\mathrm{P}_2$をそれぞれ点$(0,\ 0)$,点$(2\pi,\ 0)$にとるものとする.
愛媛大学 国立 愛媛大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{2+\sqrt{3}+\sqrt{7}}$の分母を有理化せよ.
(2)方程式$4x^2-3x+k=0$の$2$つの解が$\sin \theta,\ \cos \theta$で与えられるとき,定数$k$の値を求めよ.
(3)関数$y=4^x-2^{x+2}+1$の$-1 \leqq x \leqq 3$における最大値と最小値を求めよ.
(4)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
福岡教育大学 国立 福岡教育大学 2012年 第4問
次の問いに答えよ.

(1)無限級数
\[ 1+\frac{1}{1+e^x}+\frac{1}{(1+e^x)^2}+\cdots +\frac{1}{(1+e^x)^n}+\cdots \]
はすべての実数$x$について収束することを示し,その和を求めよ.ただし,$e$は自然対数の底とする.
(2)$(1)$で求めた無限級数の和を$f(x)$とする.方程式$\log f(x)=x$を解け.ただし,対数は自然対数とする.
山梨大学 国立 山梨大学 2012年 第2問
$a$を定数,$h$を正の定数とし,放物線$C:y=x^2$と直線$x=a$との交点を$\mathrm{P}$,放物線$C$と直線$x=a+h$との交点を$\mathrm{Q}$とする.また,直線$\mathrm{PQ}$に平行で放物線$C$に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と直線$x=a$との交点を$\mathrm{R}$,直線$\ell$と直線$x=a+h$との交点を$\mathrm{S}$とする.直線$\mathrm{PQ}$と放物線$C$に囲まれた図形の面積を$A_1$,四角形$\mathrm{PRSQ}$の面積を$A_2$としたとき,$\displaystyle \frac{A_1}{A_2}$の値は$a$と$h$に無関係に一定となることを示せ.
山梨大学 国立 山梨大学 2012年 第3問
円$C:x^2+y^2=1$と点$\mathrm{A}(x_0,\ 0)$があり,$0<x_0<1$とする.原点$\mathrm{O}$と円$C$上の点$\mathrm{B}$を通る直線$\ell_1$と線分$\mathrm{AB}$の垂直二等分線$\ell_2$の交点を$\mathrm{P}$とする.点$\mathrm{B}$が円$C$上を動くとき,点$\mathrm{P}$の軌跡の方程式を求めよ.また,その方程式が表す図形を下の座標平面上に図示せよ.
(図は省略)
鳴門教育大学 国立 鳴門教育大学 2012年 第1問
$\displaystyle a>\frac{1}{4}$のとき,$x$についての方程式
\[ |ax^2-1|=|x^2-4| \]
を解け.
東京海洋大学 国立 東京海洋大学 2012年 第2問
$x$の整式$f_n(x) (n=0,\ 1,\ 2,\ \cdots)$を
\[ \left\{ \begin{array}{l}
f_0(x)=1,\quad f_1(x)=x, \\
f_{n+1}(x)=2xf_n(x)-f_{n-1}(x) \quad (n=1,\ 2,\ \cdots) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
で定める.

(1)方程式$f_5(x)=0$を解け.
(2)$f_n(\cos \theta)=\cos n\theta (n=2,\ 3,\ 4,\ 5)$を示せ.
(3)$\displaystyle \cos \frac{\pi}{10},\ \cos \frac{3\pi}{10},\ \cos \frac{7\pi}{10},\ \cos \frac{9\pi}{10}$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第3問
定数$a (a \neq 1)$に対し,$f(x)=x^3-(a+2)x^2+(2a+1)x-a$とする.

(1)方程式$f(x)=0$の解を$a$を用いて表せ.
(2)関数$f(x)$の極値を$a$を用いて表せ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を$a$を用いて表せ.
ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。