タグ「方程式」の検索結果

103ページ目:全1641問中1021問~1030問を表示)
宮崎大学 国立 宮崎大学 2012年 第3問
関数$\displaystyle f(x)=\frac{1}{1+x^2}$について,次の各問に答えよ.

(1)曲線$y=f(x)$上の点P$\displaystyle \left( \sqrt{3},\ \frac{1}{4} \right)$における接線$\ell$の方程式を求めよ.
(2)曲線$y=f(x)$と接線$\ell$との共有点のうち,点Pと異なる点Qの$x$座標を求めよ.
(3)曲線$y=f(x)$と接線$\ell$によって囲まれる部分の面積を求めよ.
香川大学 国立 香川大学 2012年 第3問
放物線$C:y=x(x-a)$について,次の問に答えよ.ただし,$a>0$とする.

(1)直線$\ell:y=ax$と,$C$との交点で,原点とは異なる点の座標を求めよ.
(2)$C$と$x$軸とで囲まれた図形の面積を求めよ.
(3)$C$と$\ell$とで囲まれた図形$D$の面積を求めよ.
(4)点$(a,\ 0)$を通り,図形$D$の面積を2等分する直線の方程式を求めよ.
香川大学 国立 香川大学 2012年 第3問
放物線$C:y=x^2-x+1$について,次の問に答えよ.

(1)点$(0,\ 0)$を通り,放物線$C$に接する2つの直線の方程式を求めよ.
(2)放物線$C$と,(1)で求めた2つの接線で囲まれる図形を$D$とするとき,$C$と接線の概形をかき,$D$を図示せよ.
(3)$D$を$x$軸のまわりに1回転させてできる立体の体積$V$を求めよ.
群馬大学 国立 群馬大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{2}(x^2-1)$を$C$とする.$a$は定数で$a>0$とし,点A$\displaystyle \left( a,\ \frac{1}{2}(a^2-1) \right)$における$C$の接線を$\ell$とする.また$\ell$と直線$x=a$とのなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\tan \theta$を$a$を用いて表せ.
(3)点Aを通る直線で,$\ell$となす角が$\theta$であるが,直線$x=a$とは異なるものの方程式を求めよ.
香川大学 国立 香川大学 2012年 第2問
楕円$\displaystyle C_1:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$および双曲線$\displaystyle C_2:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$について,次の問に答えよ.ただし,$a>0,\ b>0$とする.

(1)楕円$C_1$上の点$(x_1,\ y_1)$における接線の方程式は
\[ \frac{x_1x}{a^2}+\frac{y_1y}{b^2}=1 \]
であることを示せ.
(2)楕円$C_1$の外部の点$(p,\ q)$を通る$C_1$の2本の接線の接点をそれぞれA$_1$,A$_2$とする.直線A$_1$A$_2$の方程式は
\[ \frac{px}{a^2}+\frac{qy}{b^2}=1 \]
であることを示せ.
(3)$(p,\ q)$が双曲線$C_2$上の点であるとき,直線$\displaystyle \frac{px}{a^2}+\frac{qy}{b^2}=1$は$C_2$に接することを示せ.
群馬大学 国立 群馬大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{2}(x^2-1)$を$C$とする.$a$は定数で$a>0$とし,点A$\displaystyle \left( a,\ \frac{1}{2}(a^2-1) \right)$における$C$の接線を$\ell$とする.また$\ell$と直線$x=a$とのなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\tan \theta$を$a$を用いて表せ.
(3)点Aを通る直線で,$\ell$となす角が$\theta$であるが,直線$x=a$とは異なるものの方程式を求めよ.
群馬大学 国立 群馬大学 2012年 第3問
曲線$\displaystyle y=\frac{1}{2}(x^2-1)$を$C$とする.$a$は定数で$a>0$とし,点A$\displaystyle \left( a,\ \frac{1}{2}(a^2-1) \right)$における$C$の接線を$\ell$とする.また$\ell$と直線$x=a$とのなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\tan \theta$を$a$を用いて表せ.
(3)点Aを通る直線で,$\ell$となす角が$\theta$であるが,直線$x=a$とは異なるものの方程式を求めよ.
群馬大学 国立 群馬大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{2}(x^2-1)$を$C$とする.$a$は定数で$a>0$とし,点A$\displaystyle \left( a,\ \frac{1}{2}(a^2-1) \right)$における$C$の接線を$\ell$とする.また$\ell$と直線$x=a$とのなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\tan \theta$を$a$を用いて表せ.
(3)点Aを通る直線で,$\ell$となす角が$\theta$であるが,直線$x=a$とは異なるものの方程式を求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第6問
極方程式$\displaystyle r=\frac{a}{2+\cos \theta}$で与えられる2次曲線がある.ただし,$a$は正の定数とする.このとき次の各問いに答えよ.

(1)この2次曲線を直交座標$(x,\ y)$に関する方程式で表せ.
(2)(1)で求めた2次曲線を$x$軸方向に$\displaystyle \frac{a}{3}$だけ平行移動した2次曲線を$C$で表す.$C$を直交座標$x,\ y$の方程式で表せ.また,この2次曲線$C$は$x$軸と2点AとBで交わる.この2点A,Bの座標を求めよ.ただし,Bの$x$座標は正とする.
(3)(2)で求めた2次曲線$C$上の$x$軸上にない点P$(\alpha,\ \beta)$から$x$軸に下ろした垂線をPHとする.さらにPと$x$軸に関して対称な点をQとするとき,次の値は定数であることを証明せよ.
\[ \frac{\text{PH} \cdot \text{QH}}{\text{AH} \cdot \text{BH}} \]
群馬大学 国立 群馬大学 2012年 第1問
曲線$\displaystyle y=\frac{1}{2}(x^2-1)$を$C$とする.$a$は定数で$a>0$とし,点$\mathrm{A} \displaystyle \left( a,\ \frac{1}{2}(a^2-1) \right)$における$C$の接線を$\ell$とする.また$\ell$と直線$x=a$とのなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とする.このとき以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\tan \theta$を$a$を用いて表せ.
(3)点$\mathrm{A}$を通る直線で,$\ell$となす角が$\theta$であるが,直線$x=a$とは異なるものの方程式を求めよ.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。