タグ「方法」の検索結果

3ページ目:全49問中21問~30問を表示)
福岡大学 私立 福岡大学 2014年 第3問
$6$人を$4$人と$2$人の$2$つのグループに分ける方法は$[ ]$通りで,$6$人を$2$人ずつの$3$つのグループに分ける方法は$[ ]$通りである.
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$(3x+2)(2x^2-5x+3)$を展開すると,$[$1$]$となる.
(2)男子$5$人,女子$3$人が$1$列に並ぶとき,女子$3$人が続いて並ぶ方法は$[$2$]$通り,一端に男子,もう一端に女子が並ぶ方法は$[$3$]$通りある.
(3)$\displaystyle \frac{1+2i}{1-3i}+\frac{1-4i}{1+3i}=a+bi$($a,\ b$は実数)と表すとき,$a=[$4$]$,$b=[$5$]$である.
(4)$1,\ 2,\ 3,\ 4,\ 5$の$5$個の数字を用いて$3$桁の整数をつくるとき,奇数は全部で$[$6$]$個できる.ただし,同じ数字を繰り返し用いてもよい.
(5)$0 \leqq \theta \leqq \pi$のとき,関数$y=-2 \sin^2 \theta+8 \cos \theta+3$は,$\theta=[$7$]$のとき,最小値$[$8$]$をとる.
(6)不等式$\displaystyle \frac{1}{9^x}-\frac{30}{3^x}+81 \leqq 0$の解は$[$9$]$である.また,$-2 \leqq x \leqq 0$において関数$\displaystyle y=\frac{1}{9^x}-\frac{30}{3^x}+81$は,$x=[$10$]$のとき,最小値$[$11$]$をとる.
昭和薬科大学 私立 昭和薬科大学 2014年 第1問
次の問いに答えよ.

(1)${2}^{314}$は$[ア][イ]$桁の整数で,最高位の数は$[ウ]$である.ただし,最高位の数とは,例えば$5279$の場合は$5$を指す.また,$\log_{10}2$を$0.3010$,$\log_{10}3$を$0.4771$とする.
(2)図のような格子状の道路網がある.点$\mathrm{A}$から点$\mathrm{B}$まで最短経路で行く方法は$[エ][オ][カ]$通りある.また,点$\mathrm{A}$から線分$\mathrm{PQ}$を通らないで点$\mathrm{B}$まで最短経路で行く方法は$[キ][ク]$通りある.
(図は省略)
(3)$\mathrm{AB}=5$,$\mathrm{AC}=6$,$\mathrm{BC}=7$である$\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle \frac{[ケ] \sqrt{[コ]}}{[サ]}$である.
(4)公比が負の数である等比数列がある.初項から第$4$項までの和は$\displaystyle \frac{75}{16}$,第$3$項と第$4$項の和は$\displaystyle \frac{27}{16}$である.この等比数列の初項は$[シ][ス]$で,公比は$\displaystyle \frac{[セ][ソ]}{[タ]}$である.
(5)条件$1 \leqq a \leqq 5$,$0 \leqq b<a$,$|c| \leqq b$を満たす整数の組$(a,\ b,\ c)$は全部で$[チ][ツ]$通りある.
(6)連立不等式
\[ |2x^2-8x+6| \leqq \frac{9}{8},\qquad x^3-6x^2+12x-8 \geqq 0 \]
の解は$\displaystyle \frac{[テ]+\sqrt{[ト]}}{[ナ]} \leqq x \leqq \frac{[ニ][ヌ]}{[ネ]}$である.
熊本大学 国立 熊本大学 2013年 第1問
$X,\ Y$は$\{ 1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$の空でない部分集合で,$X \cap Y$は空集合とする.また,$n$を自然数とする.$\mathrm{A}$君,$\mathrm{B}$君が以下のルールで対戦する.

(i) $1$回目の対戦では,まず$\mathrm{A}$君がさいころを投げて,出た目が$X$に属するならば$\mathrm{A}$君の勝ちとする.出た目が$X$に属さなければ$\mathrm{B}$君がさいころを投げて,出た目が$Y$に属するならば$\mathrm{B}$君の勝ちとする.
(ii) $1$回目の対戦で勝負がつかなかった場合は,$1$回目と同じ方法で$2$回目以降の対戦を行い,どちらかが勝つまで続ける.ただし,$n$回対戦して勝負がつかなかった場合は引き分けにする.

以下の問いに答えよ.

(1)さいころを投げたとき,$X,\ Y$に属する目が出る確率をそれぞれ$p,\ q$とする.$\mathrm{A}$君が勝つ確率を求めよ.
(2)$\mathrm{A}$君が勝つ確率が,$\mathrm{B}$君が勝つ確率よりも大きくなるような集合の組$(X,\ Y)$は何通りあるか.
西南学院大学 私立 西南学院大学 2013年 第3問
赤い玉が$4$個,白い玉が$2$個,青い玉が$1$個ある.このとき,以下の問に答えよ.

(1)これらの中から$3$個の玉を取り出して円形に並べる方法は$[ツ]$通りある.
(2)$7$個全ての玉を円形に並べる方法は$[テト]$通りある.
(3)$7$個全ての玉にひもを通し,首飾りを作るとき,$[ナ]$通りの首飾りができる.ただし,裏返して一致する首飾りは同じものとみなす.
安田女子大学 私立 安田女子大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{4}{7}-\frac{7}{9} \right) \div \frac{13}{3}$を計算せよ.
(2)不等式$x \cdot |x|<x$を解け.
(3)正四面体の$4$個の頂点を,それぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの文字で表すとき,文字の配置方法は何通りあるか求めよ.ただし,正四面体を回転させてすべての文字が一致すれば,同じ配置方法とみなす.
(4)$(1-i)^{10}$を計算せよ.ただし,$i^2=-1$である.
(5)$\log_{10}2+\log_{10}80-4 \log_{10}2$を簡単にせよ.
広島修道大学 私立 広島修道大学 2013年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$30$以下の自然数の集合を全体集合$U$とし,$U$の部分集合で$3$の倍数の集合を$A$,$U$の部分集合で$4$の倍数の集合を$B$とする.このとき,要素を書き並べる方法で表すと,$A \cap B=[$1$]$,$\overline{A} \cap B=[$2$]$である.
(2)$3$個の数字$0,\ 1,\ 2$を,重複を許して並べてできる$5$桁の整数は$[$3$]$個ある.そのうち,$0,\ 1,\ 2$の$3$個の数字がすべて使われている整数は$[$4$]$個ある.
(3)関数$y=\sin x \cos x (0 \leqq x \leqq \pi)$の最小値は$[$5$]$であり,関数$\displaystyle y=\sin \left( x+\frac{2}{3} \pi \right) (0 \leqq x \leqq \pi)$の最大値は$[$6$]$である.
(4)円$(x-a)^2+y^2=4$と直線$\displaystyle y=x-\frac{a}{2}$が接するとき,定数$a$の値は$a=[$7$]$または$a=[$8$]$である.
(5)不等式$\displaystyle 9^{x+\frac{1}{2}}-10 \cdot 3^x+3 \leqq 0$の解は$[$9$]$である.
(6)方程式$\displaystyle \frac{1}{2}x^3+mx+n=0$の解の$1$つが$-1-\sqrt{3}i$のとき,実数$m,\ n$の値は$m=[$10$]$,$n=[$11$]$である.
安田女子大学 私立 安田女子大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{4}{7}-\frac{7}{9} \right) \div \frac{13}{3}$を計算せよ.
(2)不等式$x \cdot |x|<x$を解け.
(3)正四面体の$4$個の頂点を,それぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの文字で表すとき,文字の配置方法は何通りあるか求めよ.ただし,正四面体を回転させてすべての文字が一致すれば,同じ配置方法とみなす.
(4)分担可能なある仕事を仕上げるのに,$\mathrm{A}$さんは$3$時間,$\mathrm{B}$さんは$4$時間,$\mathrm{C}$さんは$6$時間かかる.この仕事を$3$人で分担し,同時に行うとすると時間はどれだけかかるか求めよ.
安田女子大学 私立 安田女子大学 2013年 第4問
$1$から$6$の目が等確率で出るサイコロを投げ,出た目の数が偶数のとき定数$a_1$の値を$1$,奇数のとき$-1$と決める.定数$b_1,\ c_1,\ a_2,\ b_2,\ c_2$の値についてもそれぞれ同じ方法で$1$または$-1$に決める.このとき,次の問いに答えよ.

(1)$1$次関数$y=a_1x+b_1$と$y=a_2x+b_2$が$xy$平面上で共有点をもつ確率を求めよ.
(2)$1$次関数$y=a_1x+b_1$と$y=a_2x+b_2$が$xy$平面上で共有点をもたないとき,$2$次関数$y=a_1(x-b_1)^2+c_1$と$y=a_2(x-b_2)^2+c_2$が$xy$平面上で共有点をもつ確率を求めよ.
(3)$2$次関数$y=a_1(x-b_1)^2+c_1$と$y=a_2(x-b_2)^2+c_2$が$xy$平面上で共有点をもつ確率を求めよ.
千葉大学 国立 千葉大学 2012年 第6問
1より小さい正の実数$a$に対して
\[ \text{円}C(a): (x+a-1)^2+(y+a-1)^2=2a^2 \]
と定める.その上で,数列$\{a_n\}$を以下の方法によって定める.

\mon[(i)] $n=1$のときは,円$C(a)$が$x$軸と接するような定数$a$の値を$a_1$とする.さらに,円$C(a_1)$と$x$軸との接点をP$_1$とし,円$C(a_1)$の中心をQ$_1$とおく.
\mon[(ii)] $n \geqq 2$のときは,円$C(a)$が直線P$_{n-1}$Q$_{n-1}$と接するような定数$a$の値を$a_n$とする.さらに,円$C(a_n)$と直線P$_{n-1}$Q$_{n-1}$との接点をP$_n$とし,円$C(a_n)$の中心をQ$_n$とおく.

このとき,以下の問いに答えよ.

(1)$a_1$を求めよ.
(2)$a_2$を求めよ.
(3)$\{a_n\}$の一般項を求めよ.
スポンサーリンク

「方法」とは・・・

 まだこのタグの説明は執筆されていません。