タグ「整数」の検索結果

94ページ目:全1020問中931問~940問を表示)
東京工業大学 国立 東京工業大学 2010年 第2問
$a$を正の整数とする.正の実数$x$についての方程式
\[ (*) \quad x = \left[ \frac{1}{2} \left( x+ \frac{a}{x} \right) \right] \]
が解を持たないような$a$を小さい順に並べたものを$a_1,\ a_2,\ a_3,\ \cdots$とする.ここに$[ \quad ]$はガウス記号で,実数$u$に対し,$[ \; u \; ]$は$u$以下の最大の整数を表す.

(1)$a = 7,\ 8,\ 9$の各々について,$(*)$の解があるかどうかを判定し,ある場合は解$x$を求めよ.
(2)$a_1,\ a_2$を求めよ.
(3)$\displaystyle \sum_{n=1}^{\infty} \frac{1}{a_n}$を求めよ.
東京工業大学 国立 東京工業大学 2010年 第3問
1から$n$までの数字がもれなく一つずつ書かれた$n$枚のカードの束から同時に2枚のカードを引く.このとき,引いたカードの数字のうち小さいほうが3の倍数である確率を$p(n)$とする.

(1)$p(8)$を求めよ.
(2)正の整数$k$に対し,$p(3k +2)$を$k$で表せ.
東京大学 国立 東京大学 2010年 第5問
$C$を半径$1$の円周とし,$\mathrm{A}$を$C$上の$1$点とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$\mathrm{A}$を時刻$t=0$に出発し,$C$上を各々一定の速さで,$\mathrm{P}$,$\mathrm{Q}$は反時計回りに,$\mathrm{R}$は時計回りに,時刻$t=2\pi$まで動く.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の速さは,それぞれ$m$,$1$,$2$であるとする.(したがって,$\mathrm{Q}$は$C$をちょうど一周する.)ただし,$m$は$1\leqq m \leqq 10$をみたす整数である.$\triangle \mathrm{PQR}$が$\mathrm{PR}$を斜辺とする直角二等辺三角形となるような速さ$m$と時刻$t$の組をすべて求めよ.
千葉大学 国立 千葉大学 2010年 第1問
直角三角形$\mathrm{ABC}$は$\angle \mathrm{C}$が直角で,各辺の長さは整数であるとする.辺$\mathrm{BC}$の長さが3以上の素数$p$であるとき,以下の問いに答えよ.

(1)辺$\mathrm{AB}$,$\mathrm{CA}$の長さを$p$を用いて表せ.
(2)$\tan \angle \mathrm{A}$と$\tan \angle \mathrm{B}$は,いずれも整数にならないことを示せ.
千葉大学 国立 千葉大学 2010年 第5問
放物線$y=x^2$と直線$y=ax+b$によって囲まれる領域を
\[ D=\{(x,\ y) \; | \; x^2 \leqq y \leqq ax+b \} \]
とし,$D$の面積が$\displaystyle \frac{9}{2}$であるとする.座標平面上で,$x$座標,$y$座標が共に整数である点を格子点と呼ぶ.

(1)$a=0$のとき,$D$に含まれる格子点の個数を求めよ.
(2)$a,\ b$が共に整数であるとき,$D$に含まれる格子点の個数は,$a,\ b$の値によらず一定であることを示せ.
東京大学 国立 東京大学 2010年 第3問
2つの箱LとR,ボール30個,コイン投げで表と裏が等確率$\displaystyle \frac{1}{2}$で出るコイン1枚を用意する.$x$を0以上30以下の整数とする.Lに$x$個,Rに$30-x$個のボールを入れ,次の操作$(\sharp)$を繰り返す.

\mon[$(\sharp)$] 箱Lに入っているボールの個数を$z$とする.コインを投げ,表が出れば箱Rから箱Lに,裏が出れば箱Lから箱Rに,$K(z)$個のボールを移す.ただし,$0 \leqq z \leqq 15$のとき$K(z)=z$,$16 \leqq z \leqq 30$のとき$K(z)=30-z$とする.

$m$回の操作の後,箱Lのボールの個数が30である確率を$P_m(x)$とする.たとえば$\displaystyle P_1(15)=P_2(15)=\frac{1}{2}$となる.以下の問(1),(2)に答えよ.

(1)$m \geqq 2$のとき,$x$に対してうまく$y$を選び,$P_m(x)$を$P_{m-1}(y)$で表せ.
(2)$n$を自然数とするとき,$P_{2n}(10)$を求めよ.
東京大学 国立 東京大学 2010年 第4問
$C$を半径1の円周とし,Aを$C$上の1点とする.3点P,Q,RがAを時刻$t=0$に出発し,$C$上を各々一定の速さで,P,Qは反時計回りに,Rは時計回りに,時刻$t=2\pi$まで動く.P,Q,Rの速さは,それぞれ$m$,1,2であるとする.(したがって,Qは$C$をちょうど一周する.)ただし,$m$は$1\leqq m\leqq10$をみたす整数である.$\triangle$PQRがPRを斜辺とする直角二等辺三角形となるような速さ$m$と時刻$t$の組をすべて求めよ.
名古屋大学 国立 名古屋大学 2010年 第4問
$xy$平面上で$x$座標と$y$座標がともに整数である点を格子点と呼ぶ.

(1)$\displaystyle y=\frac{1}{3}x^2+\frac{1}{2}x$のグラフ上に無限個の格子点が存在することを示せ.
(2)$a,\ b$は実数で$a \neq 0$とする.$y=ax^2+bx$のグラフ上に,点$(0,\ 0)$以外に格子点が2つ存在すれば,無限個存在することを示せ.
大阪大学 国立 大阪大学 2010年 第5問
$n$を$0$以上の整数とする.立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$の頂点を,以下のように移動する$2$つの動点$\mathrm{P}$,$\mathrm{Q}$を考える.時刻$0$には$\mathrm{P}$は頂点$\mathrm{A}$に位置し,$\mathrm{Q}$は頂点$\mathrm{C}$に位置している.時刻$n$において,$\mathrm{P}$と$\mathrm{Q}$が異なる頂点に位置していれば,時刻$n+1$には,$\mathrm{P}$は時刻$n$に位置していた頂点から,それに隣接する$3$頂点のいずれかに等しい確率で移り,$\mathrm{Q}$も時刻$n$に位置していた頂点から,それに隣接する$3$頂点のいずれかに等しい確率で移る.一方,時刻$n$において,$\mathrm{P}$と$\mathrm{Q}$が同じ頂点に位置していれば,時刻$n+1$には$\mathrm{P}$も$\mathrm{Q}$も時刻$n$の位置からは移動しない.

(1)時刻$1$において,$\mathrm{P}$と$\mathrm{Q}$が異なる頂点に位置するとき,$\mathrm{P}$と$\mathrm{Q}$はどの頂点にあるか.可能な組み合わせをすべて挙げよ.
(2)時刻$n$において,$\mathrm{P}$と$\mathrm{Q}$が異なる頂点に位置する確率$r_n$を求めよ.
(3)時刻$n$において,$\mathrm{P}$と$\mathrm{Q}$がともに上面$\mathrm{ABCD}$の異なる頂点に位置するか,またはともに下面$\mathrm{EFGH}$の異なる頂点に位置するかのいずれかである確率を$p_n$とする.また, 時刻$n$において,$\mathrm{P}$と$\mathrm{Q}$のいずれか一方が上面$\mathrm{ABCD}$,他方が下面$\mathrm{EFGH}$にある確率を$q_n$とする.$p_{n+1}$を,$p_n$と$q_n$を用いて表せ.
(4)$\displaystyle \lim_{n \to \infty}\frac{q_n}{p_n}$を求めよ.
(図は省略)
岩手大学 国立 岩手大学 2010年 第3問
整数$n=0,\ 1,\ 2,\ \cdots$に対して,
\begin{eqnarray}
& & a_n = \int_n^{n+1} \{xe^{-x}-(n+1)e^{-n-1}(x-n) \} \, dx \nonumber \\
& & b_n = \int_n^{n+1} \{xe^{-x}-(n+1)e^{-n-1} \} \, dx \nonumber
\end{eqnarray}
とおくとき,次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)$a_0,\ b_0$を求めよ.
(2)$c_n=a_n-b_n$で定める数列$\{c_n\}$の一般項を求めよ.
(3)$\displaystyle S_n=\sum_{k=0}^n c_k$であるとき,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.ただし,$\displaystyle \lim_{n \to \infty} \frac{n}{e^n}=0$を用いてよい.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。