タグ「整数」の検索結果

87ページ目:全1020問中861問~870問を表示)
北海学園大学 私立 北海学園大学 2011年 第5問
$0$以上の整数$n$に対して,$\displaystyle I_n=\int_0^1 x^ne^{5x} \, dx$とするとき,次の問いに答えよ.ただし,$e$は自然対数の底を表す.

(1)$I_0$の値を求めよ.
(2)$I_1$の値を求めよ.
(3)$n \geqq 1$のとき,$I_n$を$n$と$I_{n-1}$を用いて表せ.また,$I_3$の値を求めよ.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)循環小数$1. \dot{4} \dot{6}$を分数で表すと$[ア]$である.$1. \dot{4} \dot{6}+2. \dot{7}$を循環小数で表すと$[イ]$となる.
(2)$f(\theta)=\sqrt{3} \sin 2\theta-\cos 2\theta+\sqrt{3} \sin \theta+\cos \theta$とする.$x=\sqrt{3} \sin \theta+\cos \theta$として,$f(\theta)$を$x$で表すと$[ウ]$となる.$0 \leqq \theta \leqq \pi$であるとき,関数$f(\theta)$の最大値は$[エ]$である.
(3)$\displaystyle \left( \frac{4}{3} \right)^n$の整数部分が$10$桁になるような整数$n$は$[オ]$個ある.$n$がその中で$4$番目に小さい整数であるとき,$\displaystyle \left( \frac{4}{3} \right)^n$の最高位の数字は$[カ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(4)円$(x-2)^2+y^2=1$と直線$y=mx$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$m$の値の範囲は$[キ]$であり,原点を$\mathrm{O}$とするとき,線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの積は$[ク]$である.
(5)図のように半径$r$の半球面に円柱が内接している.円柱の体積が最大になるのは円柱の高さが$[ケ]$のときであり,その円柱の体積は$[コ]$である.
(図は省略)
名城大学 私立 名城大学 2011年 第2問
$n$を整数とし,$x$についての$3$次式$P(x)=x(x-1)(x-2)-n(n-1)(n-2)$を考える.

(1)$P(x)$を$x-n$で割ったときの商と余りを求めよ.
(2)$n=4$のときの方程式$P(x)=0$の$3$つの解を$\alpha,\ \beta,\ \gamma$とする.このとき$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$の値を求めよ.
(3)方程式$P(x)=0$の解がすべて実数となるとき,整数$n$の値をすべて求めよ.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)$2$次関数$y=x^2+x+k$の$-1 \leqq x \leqq 2$における最大値が$8$であるとき,実数$k$の値は$[ア]$であり,そのときの最小値は$[イ]$である.
(2)$\angle \mathrm{O}$が直角の直角三角形$\mathrm{OAB}$において,$\angle \mathrm{O}$の$2$等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.$\mathrm{OA}=a$,$\mathrm{OB}=b$とするとき,$\mathrm{OC}=[ウ]$であり,$\mathrm{OB}=\mathrm{OC}$のとき,$\tan A$の値は$[エ]$である.
(3)$3$次方程式$x^3+ax-3a=0$のただひとつの整数解が$x=2$であるとき,$a=[オ]$であり,そのときの虚数解は,$x=[カ]$である.
(4)$x$の$2$次式$f(x)$が,$f(-1)=f(2)=0$と$f(3)=-1$を満たすとき,$f^\prime(-1)=[キ]$であり,$\displaystyle \int_0^2 f(x) \, dx=[ク]$である.
(5)$\displaystyle \frac{\pi}{6} \leqq \theta \leqq \frac{5}{6} \pi$のとき,$\displaystyle \sin \left( 2\theta-\frac{\pi}{6} \right)-\cos 2\theta$の最大値は$[ケ]$であり,最小値は$[コ]$である.
明治大学 私立 明治大学 2011年 第3問
自然数$n,\ k$について,$xy$平面上で$0 \leqq y \leqq x$と$y \leqq 2n+k-x$で定まる領域を$C_k$とする.ある整数$a,\ b$に対して,$(a,\ b)$,$(a+k,\ b)$,$(a,\ b+k)$,$(a+k,\ b+k)$を頂点にもつ正方形を$1$辺が$k$の格子点の正方形と呼ぶ事にする.$C_k$に入る格子点の正方形を考える($C_k$の境界も含める).このとき,次の問いに答えよ.

(1)$n=4$のとき,$C_k$内に$1$辺が$k$の格子点の正方形が存在するための,最大の$k$をもとめよ.
(2)$1$辺が$k$の格子点の正方形が,$C_k$内に存在するための$k$の条件を,$n$であらわせ.
(3)$C_k$内にある$1$辺が$k$の格子点の正方形の総数を$a_k$とするとき,$a_k$を$n$と$k$の式であらわせ.
(4)$a_1+a_2+\cdots +a_n$をもとめよ.
龍谷大学 私立 龍谷大学 2011年 第3問
三角形$\mathrm{OAB}$において,$\mathrm{OA}=\sqrt{10}$,$\mathrm{OB}=1$,$\mathrm{AB}=\sqrt{5}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.$n$を整数とし,$L={|\displaystyle \frac{1|{4} \overrightarrow{a}+n \overrightarrow{b}}}^2$を考える.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めなさい.
(2)$L$を$n$で表しなさい.
(3)$L$を最小にする整数$n$を求めなさい.
西南学院大学 私立 西南学院大学 2011年 第5問
以下の問に答えよ.

(1)$25^3$を計算して,その答えを$A \times 10^3+625$の形に表したとき,$A$の値を求めよ.ただし,$A$は$0$以上の整数とする.
(2)$2$以上の自然数$n$に対して,$25^n$の下$3$桁は$625$になることを,数学的帰納法を用いて証明せよ.
(3)$25^{25}$の下$4$桁の数値を求めよ.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \alpha=\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}+6 \right\}^{\frac{1}{3}}-\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}-6 \right\}^{\frac{1}{3}}$は整数を係数とする$3$次方程式
\[ 2x^3+[ア]x^2+[イ]x+[ウ]=0 \]
の解である.
(2)$f(x)=x^3-4x$とする.曲線$y=f(x)$上に$2$点$\mathrm{P}(t-1,\ f(t-1))$,$\mathrm{Q}(t+1,\ f(t+1))$をとる.線分$\mathrm{PQ}$が曲線$y=f(x)$と$\mathrm{P}$,$\mathrm{Q}$以外の点で交わるための$t$の条件は
\[ \frac{[エ]}{[オ]}<t<\frac{[カ]}{[キ]} \]
である.
学習院大学 私立 学習院大学 2011年 第2問
$n$を自然数とする.

(1)等式
\[ \sum_{k=0}^n (-1)^k \comb{n}{k}=0 \]
を示せ.
(2)$k$が$0 \leqq k \leqq n$を満たす整数のとき,等式
\[ (n+1) \comb{n}{k}=(k+1) \comb{n+1}{k+1} \]
が成り立つことを示せ.
(3)等式
\[ \sum_{k=0}^n \frac{(-1)^k}{k+1} \comb{n}{k}=\frac{1}{n+1} \]
を示せ.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\log_{10}x+\log_{10}y-\log_{10}(y+1)=1$を満たす整数$x,\ y$に対して,
\[ x+y=[ア] \text{または} [イ] \]
が成り立つ.ここで$[ア]<[イ]$とする.
(2)$(100.1)^7$の$100$の位の数字は$[ウ]$であり,小数第$4$位の数字は$[エ]$である.
(3)$\triangle \mathrm{ABC}$において$\mathrm{AB}>\mathrm{AC}$,$\mathrm{BC}=8$,$\displaystyle \cos A=\frac{9}{40}$であり,辺$\mathrm{BC}$の中点を$\mathrm{M}$とすると$\mathrm{AM}=5$である.このとき,
\[ \mathrm{AB}^2+\mathrm{AC}^2=[オ],\quad \mathrm{AB} \cdot \mathrm{AC}=[カ] \]
である.したがって
\[ \mathrm{AB}=[キ] \sqrt{[ク]},\quad \mathrm{AC}=[ケ] \sqrt{[コ]} \]
である.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。