タグ「整数」の検索結果

86ページ目:全1020問中851問~860問を表示)
早稲田大学 私立 早稲田大学 2011年 第3問
数列$\{a_n\}$を次のように定める.\\
(i)\ $a_1 = 0$\\
(ii)\ $n=2,\ 3,\ 4,\cdots$に対し,\\
\quad \quad $a_{n-1} \geqq n$のとき,$a_n = a_{n-1} - n$\\
\quad \quad $a_{n-1} < n$のとき,$a_n=a_{n-1}+n$\\
とする.\\
次の設問に答えよ.

(1)$a_7$を求めよ.
(2)$a_k = k$のとき,条件
\[ m>k,\quad a_m=m\]
を満たす最小の整数$m$を$k$で表せ.
(3)$a_{2011}$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第1問
$a>0,\ b>0$は次の式を満たす.
\[ \begin{array}{ll}
ab-b^2+5a-2b+15=0 & \cdots\cdots① \\
a^ab^b-a^bb^a-999a^ab^a=0 & \cdots\cdots②
\end{array} \]
次の問に答えよ.ただし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771,\ \log_{10}7=0.8451$とする.

(1)$b-a$の値を求めよ.
(2)$a$および$b$の値を求めよ.
(3)$a^{50}$は何桁の整数か.
(4)$a^{50}$の最高位の数字を求めよ.
早稲田大学 私立 早稲田大学 2011年 第2問
次の問に答えよ.

(1)$a,\ b$は整数で,$2$次方程式
\[ x^2 + ax + b= 0 \dotnum{A} \]
が異なる$2$つの実数解$\alpha,\ \beta$をもつとする.このとき,$\alpha,\ \beta$はともに整数であるか,ともに無理数であるかのいずれかであることを証明する.以下の問に答え,証明を完成させよ.\\
\quad まず,$b=0$のときは,$x^2+ax=0$であるから\maru{A}は整数解$0,\ -a$をもつ.以下では$ b \neq 0$とする.\\
\quad 解と係数の関係より,$\alpha + \beta = -a,\ \alpha\beta = b$であり,これらは整数である.有理数と無理数の和は有理数でなく,整数と整数以外の有理数の和は整数ではないという事実を用いると,$\alpha,\ \beta$がともに整数以外の有理数であるとして矛盾を導けばよい.\\
\quad そこで,$\alpha,\ \beta$が2以上の整数$p_1,\ p_2$と0でない整数$q_1,\ q_2$を用いて,既約分数
\[ \alpha = \frac{q_1}{p_1},\quad \beta = \frac{q_2}{p_2} \]
で表されると仮定する.ここに,$\displaystyle\frac{q_i}{p_i}\ (i=1,\ 2)$が既約分数であるとは,$p_i$と$|q_i|$の最大公約数が1であることをいう.このとき,
\[ \alpha + \beta = \frac{p_2q_1+p_1q_2}{p_1p_2} \cdots\cdots① \]
\[ \alpha\beta = \frac{q_1q_2}{p_1p_2} \cdots\cdots② \]
である.

(i) $①$において,$\alpha+\beta$が整数であることを用いて,$p_1=p_2$であることを示せ.
(ii) $②$において,$\alpha\beta$が整数であることと問\maru{1}の結果から,既約分数の仮定に矛盾することを示せ.

$(ⅱ)$の結果から,$\alpha,\ \beta$はともに整数であるか,ともに無理数であることが示された.
(2)$c$が自然数のとき,$\sqrt{c}$は自然数であるか無理数であることを証明せよ.
明治大学 私立 明治大学 2011年 第1問
長方形$\mathrm{ABCD}$は,各辺の長さが整数で,面積が$1728$である.また$\mathrm{AB}<\mathrm{BC}$であるとする.下記の空欄内の各文字に当てはまる数字を答えよ.

(1)長方形$\mathrm{ABCD}$は$[ア][イ]$通り存在する.
(2)可能な長方形について$\mathrm{AB}+\mathrm{BC}$の総和は$\kakkofour{ウ}{エ}{オ}{カ}$となる.
(3)辺$\mathrm{AB}$の長さの最大値は$[キ][ク]$である.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$に数値を入れよ.

(1)$a_1,\ a_2,\ a_3,\ \cdots$を初項が$-15$,公差が整数$d$の等差数列とする.このとき$a_4<0<a_5$ならば,$d=[1]$となり,
\[ \sum_{n=1}^5 (-1)^{n-1}na_n=[2] \]
である.
(2)$1$から$4$までの数字が,$1$つずつ書いてある$4$枚のカードがある.この中から同時に$2$枚を取り出し,大きい方の数字を$a$とし,小さい方の数字を$b$とするとき,$2a-b$を得点とする.このとき,得点の期待値は,$[3]$であり,得点が$[3]$未満となる確率は,$[4]$である.
(3)$0 \leqq x \leqq \pi$かつ$\displaystyle x \neq \frac{\pi}{2}$を満たす$x$について,
\[ 1-\tan^2 x=3 \cos (\pi-x)+\frac{2}{\cos (\pi-x)} \]
を満たすとき,
\[ \cos x=[5],\quad \sin x=[6] \]
である.
明治大学 私立 明治大学 2011年 第1問
以下の$[ア]$から$[ツ]$にあてはまる数字または式を記入せよ.

(1)数列
\[ \frac{1}{1+2},\ \frac{1}{1+2+3},\ \frac{1}{1+2+3+4},\ \cdots \]
の第$n$項を$a_n$で表すと
\[ a_{40} = \frac{1}{[ア][イ][ウ]} \]
であり,
\[ \sum_{n=40}^{80} a_n = \frac{[エ]}{[オ][カ]} \]
である.
(2)$\mathrm{OA}=2$,$\mathrm{OB}=1$である三角形$\mathrm{OAB}$において,$\angle \mathrm{AOB}$の$2$等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.また線分$\mathrm{AB}$を$5:2$に外分する点を$\mathrm{D}$,線分$\mathrm{OB}$を$2:1$に外分する点を$\mathrm{E}$とする.さらに直線$\mathrm{OC}$と直線$\mathrm{DE}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,


$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{[キ]}{[ク]} \overrightarrow{a}+\frac{[ケ]}{[コ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{DE}}=\frac{[サ]}{[シ]} \overrightarrow{a}+\frac{[ス]}{[セ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{a}+\frac{[チ]}{[ツ]} \overrightarrow{b}$


となる.

(3)$\displaystyle \lim_{x \to 0}\frac{\sqrt{1+6x^2}-1}{\sin^2 x}=[テ]$
(4)$\comb{n}{5}$が$5$の倍数となるような整数$n$は,$100 \leqq n \leqq 125$の範囲に$[ト]$個ある.
金沢工業大学 私立 金沢工業大学 2011年 第1問
次の問いに答えよ.

(1)$x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle x+\frac{1}{x}=[ア] \sqrt{[イ]}$,$\displaystyle x^3+\frac{1}{x^3}=[ウエ] \sqrt{[オ]}$である.
(2)$(2a+1)(2a-1)(a^2-a+4)$の展開式における$a^2$の項の係数は$[カキ]$である.
(3)整式$A=x^2-2xy+3y^2$,$B=2x^2+3y^2$,$C=x^2-2xy$について
\[ 2(A-B)-\{C-(3A-B)\}=[クケ]x^2-[コ]xy+[サ]y^2 \]
である.
(4)方程式$x^2+3kx+k^2+5k=0$が重解をもつような定数$k$の値は$[シ]$,$[ス]$である.ただし,$[シ]<[ス]$とする.また,$k=[ス]$のとき,この方程式の重解は$x=[セソ]$である.
(5)$2$次関数$y=2x^2-2mx-m^2+9$のグラフが$x$軸の正の部分と異なる$2$点で交わるような定数$m$の値の範囲は$\sqrt{[タ]}<m<[チ]$である.
(6)$\displaystyle \tan \theta=-\frac{\sqrt{5}}{2}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{5}}{[ツ]}$,$\displaystyle \cos \theta=\frac{[テト]}{[ナ]}$である.ただし,$0^\circ \leqq \theta \leqq 180^\circ$とする.
(7)数字$0,\ 1,\ 2,\ 3,\ 4$を使い$4$桁の整数を作る.このとき,$4$桁の整数は全部で$[アイ]$個あり,このうち$2$の倍数は$[ウエ]$個ある.ただし,同じ数字を重複して使わないこととする.
(8)大小$2$個のさいころを同時に投げ,大きいさいころの出た目を$X$,小さいさいころの出た目を$Y$とする.このとき,$X+Y=8$となる確率は$\displaystyle \frac{[オ]}{[カキ]}$であり,$2X-Y=4$となる確率は$\displaystyle \frac{[ク]}{[ケコ]}$である.
上智大学 私立 上智大学 2011年 第1問
$a,\ b,\ c$は整数で,$a \geqq 1,\ b \geqq 0,\ c \geqq 0$とする.$x$の2次式$P(x)=ax^2+bx+c$を考える.

(1)$P(1)=2$を満たす$P(x)$は全部で[ア]個存在する.
(2)条件 \[ \lceil P(n)=5 \text{を満たす自然数}n\text{が存在する}\rfloor \]
を満たす$P(x)$は全部で[イ]個存在する.
このような$P(x)$のうち,$P(3)=17$を満たすものは
\[ P(x) = [ウ]x^2+[エ]x+[オ] \]
である.
(3)条件
\[ \lceil P(n)=3 \text{を満たす自然数}n\text{が存在し,} \]
\[ \qquad \qquad \text{かつ,任意の自然数}m\text{に対して}P(m)\text{が奇数である}\rfloor \]
を満たす$P(x)$のうち,$a$が最大のものは
\[ P(x) = [カ]x^2+[キ]x+[ク] \]
であり,$a$が最小のものは
\[ P(x) = [ケ]x^2+[コ]x+[サ] \]
である.
北海学園大学 私立 北海学園大学 2011年 第2問
$1$から$10$までの整数の中から異なる$3$個の整数を取り出す.

(1)$3$個の整数の取り出し方は全部で何通りあるか.
(2)取り出した$3$個の整数の和が偶数になる場合は何通りあるか.
(3)取り出した$3$個の整数の和が$10$以上の偶数になる場合は何通りあるか.
北海学園大学 私立 北海学園大学 2011年 第3問
$1$から$9$までの整数の中から異なる$3$つの整数$a,\ b,\ c$を選ぶとき,次の問いに答えよ.ただし,$a<b<c$とする.

(1)$a,\ b,\ c$の積が奇数になる選び方は何通りあるか.
(2)$a,\ b,\ c$の積が$3$の倍数になる選び方は何通りあるか.
(3)$a,\ b,\ c$の積が$9$の倍数になる選び方は何通りあるか.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。