タグ「整数」の検索結果

80ページ目:全1020問中791問~800問を表示)
奈良県立医科大学 公立 奈良県立医科大学 2012年 第4問
整数$m$が与えられたとき,$x$に関する整数係数の$2$つの整式$f(x)$,$g(x)$が関係式
\[ f(x) \equiv g(x) \pmod m \]
を満たすとは,等式$f(x)-g(x)=mh(x)$を満たすような整数係数の整式$h(x)$が存在することである.

(1)$f(x),\ g(x),\ F(x),\ G(x)$を整数係数の整式とする.もし,ある整数$m$について関係式$f(x) \equiv g(x) \pmod m$,かつ$F(x) \equiv G(x) \pmod m$が満たされるならば,関係式$f(x)+F(x) \equiv g(x)+G(x) \pmod m$,かつ$f(x)F(x) \equiv g(x)G(x) \pmod m$が満たされることを証明せよ.
(2)正整数$p (>1)$を素数とする.$p$より小さい任意の正整数$i$に対して二項係数$\comb{p}{i}$は$p$の倍数であることを証明せよ.
(3)正整数$p (>1)$を素数とする.任意の正整数$n$について,関係式
\[ (1+x)^{p^n} \equiv 1+x^{p^n} \pmod p \]
が満たされることを証明せよ.
(4)正整数$p (>1)$を素数とし,$n$を$2$以上の正整数とする.$n-1$個の二項係数$\comb{n}{i} (1 \leqq i \leqq n-1)$がすべて$p$の倍数であるための必要十分条件は,整数$n$が素数$p$の正べきである(すなわち,適当な正整数$k$を用いて$n=p^k$と表せる)ことを証明せよ.
京都府立大学 公立 京都府立大学 2012年 第4問
$n$を自然数とする.整数を成分にもつ行列
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right),\quad B=\left( \begin{array}{cc}
3 & x \\
y & z
\end{array} \right),\quad E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right) \]
は$AB=BA$,$B^2-3B+2E=O$を満たすとする.ただし$x \neq y$とする.以下の問いに答えよ.

(1)$a>b>c>d$,$bc>0$かつ$A^2=18E$のとき,$a,\ b,\ c,\ d$の値をすべて求めよ.
(2)$B^n=p_nB+q_nE$で定まる数列$\{p_n\}$,$\{q_n\}$の一般項をそれぞれ求めよ.
(3)$a=3$,$b=2$,$c=-4$,$d=-3$のとき,$x,\ y,\ z$の値および$(AB)^{2n}$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第3問
関数$f(x)=mx \cos (mx)-\sin (mx)$について,以下の問いに答えよ.ただし,$m$は正の整数とする.

(1)$f(x)$が極値をとる最も小さい正の実数$x$を,$m$を用いて表せ.
(2)$m=2$のとき,区間$0 \leqq x \leqq 2\pi$における$f(x)$の最大値を求めよ.
(3)$m=3$のとき,曲線$y=f(x)$上の点$\displaystyle \left( \frac{\pi}{2},\ f \left( \frac{\pi}{2} \right) \right)$における曲線の接線が$y$軸と交わる点の座標$(x_0,\ y_0)$を求めよ.
(4)$\displaystyle \int_0^\pi f(x) \, dx=0$が成り立つために$m$が満たすべき条件を求めよ.
京都大学 国立 京都大学 2011年 第4問
$n$は$2$以上の整数であり,$\displaystyle\frac{1}{2} < a_j < 1\ (j=1,\ 2,\ \cdots,\ n)$であるとき,不等式
\[ (1-a_1)(1-a_2)\cdots(1-a_n) > 1- \left( a_1+ \frac{a_2}{2}+ \cdots +\frac{a_n}{2^{n-1}} \right) \]
が成立することを示せ.
東京大学 国立 東京大学 2011年 第2問
実数$x$の小数部分を,$0 \leqq y<1$かつ$x-y$が整数となる実数$y$のこととし,これを記号$\langle x \rangle$で表す.実数$a$に対して,無限数列$\{a_n\}$の各項$a_n \ (n=1,\ 2,\ 3,\ \cdots)$を次のように順次定める.
\[ a_1=\langle a\rangle \]
\[
\left\{
\begin{array}{l}
a_n \neq 0 \text{のとき,} \quad a_{n+1}= \displaystyle \left\langle \frac{1}{a} \right\rangle \\
a_n = 0 \text{のとき,} \quad a_{n+1}=0
\end{array}
\right.
\]

(1)$a=\sqrt{2}$のとき,数列$\{a_n\}$を求めよ.
(2)任意の自然数$n$に対して$a_n=a$となるような$\displaystyle \frac{1}{3}$以上の実数$a$をすべて求めよ.
東京大学 国立 東京大学 2011年 第2問
実数$x$の小数部分を,$0 \leqq y<1$かつ$x-y$が整数となる実数$y$のこととし,これを記号$\langle x \rangle$で表す.実数$a$に対して,無限数列$\{a_n\}$の各項$a_n \ (n=1,\ 2,\ 3,\ \cdots)$を次のように順次定める.
\[ a_1=\langle a\rangle \]
\[
\left\{
\begin{array}{l}
a_n \neq 0 \text{のとき,} \quad a_{n+1}= \displaystyle \left\langle \frac{1}{a} \right\rangle \\
a_n = 0 \text{のとき,} \quad a_{n+1}=0
\end{array}
\right.
\]

(1)$a=\sqrt{2}$のとき,数列$\{a_n\}$を求めよ.
(2)任意の自然数$n$に対して$a_n=a$となるような$\displaystyle \frac{1}{3}$以上の実数$a$をすべて求めよ.
(3)$a$が有理数であるとする.$a$を整数$p$と自然数$q$を用いて$\displaystyle a=\frac{p}{q}$と表すとき,$q$以上のすべての自然数$n$に対して,$a_n=0$であることを示せ.
京都大学 国立 京都大学 2011年 第5問
$0$以上の整数を$10$進法で表すとき,次の問いに答えよ.ただし,$0$は$0$桁の数と考えることにする.また$n$は正の整数とする.

(1)各桁の数が$1$または$2$である$n$桁の整数を考える.それらすべての整数の総和を$T_n$とする.$T_n$を$n$を用いて表せ.
(2)各桁の数が$0,\ 1,\ 2$のいずれかである$n$桁以下の整数を考える.それらすべての総和$S_n$をとする.$S_n$が$T_n$の$15$倍以上になるのは,$n$がいくつ以上のときか.必要があれは,$0.301 < \log_{10}2< 0.302$および$0.477<\log_{10}3<0.478$を用いてもよい.
大阪大学 国立 大阪大学 2011年 第1問
実数の組$(x,\ y,\ z)$で,どのような整数$l,\ m,\ n$に対しても,等式
\[ l\cdot 10^{x-y}-nx + l\cdot 10^{y-z} + m\cdot 10^{x-z} = 13l+36m+ny \]
が成り立つようなものをすべて求めよ.
千葉大学 国立 千葉大学 2011年 第1問
$1$個のさいころを$3$回投げる.$1$回目に出る目を$a_1$,$2$回目に出る目を$a_2$,$3$回目に出る目を$a_3$とし,整数$n$を
\[ n=(a_1-a_2)(a_2-a_3)(a_3-a_1) \]
と定める.

(1)$n=0$である確率を求めよ.
(2)$|n|=30$である確率を求めよ.
横浜国立大学 国立 横浜国立大学 2011年 第1問
$3$次関数$f(x)=x^3-3x^2-4x+k$について,次の問いに答えよ.ただし,$k$は定数とする.

(1)$f(x)$が極値をとるときの$x$を求めよ.
(2)方程式$f(x)=0$が異なる$3$つの整数解をもつとき,$k$の値およびその整数解を求めよ.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。