タグ「整数」の検索結果

69ページ目:全1020問中681問~690問を表示)
三重大学 国立 三重大学 2012年 第1問
実数$x$に対し,$[\,x\,]$を$x$以下の最大の整数とする.たとえば,$\displaystyle [\,2\,]=2,\ \left[ \frac{7}{5} \right]=1$である.数列$\{a_k\}$を
\[ a_k=\left[ \frac{3k}{5} \right] \quad (k=1,\ 2,\ \cdots) \]
と定めるとき,以下の問いに答えよ.

(1)$a_1,\ a_2,\ a_3,\ a_4,\ a_5$を求めよ.
(2)$a_{k+5}=a_k+3 \ (k=1,\ 2,\ \cdots)$を示せ.
(3)自然数$n$に対して,$\displaystyle \sum_{k=1}^{5n}a_k$を求めよ.
三重大学 国立 三重大学 2012年 第1問
実数$x$に対し,$[\,x\,]$を$x$以下の最大の整数とする.たとえば,$\displaystyle [\,2\,]=2,\ \left[ \frac{7}{5} \right]=1$である.数列$\{a_k\}$を
\[ a_k=\left[ \frac{3k}{5} \right] \quad (k=1,\ 2,\ \cdots) \]
と定めるとき,以下の問いに答えよ.

(1)$a_1,\ a_2,\ a_3,\ a_4,\ a_5$を求めよ.
(2)$a_{k+5}=a_k+3 \ (k=1,\ 2,\ \cdots)$を示せ.
(3)自然数$n$に対して,$\displaystyle \sum_{k=1}^{5n}a_k$を求めよ.
三重大学 国立 三重大学 2012年 第4問
以下の問いに答えよ.

(1)関数$y=x-e^{-x}$の増減を調べよ.
(2)実数$\alpha$で$\alpha-e^{-\alpha}=0$を満たすものがひとつだけ存在することを示せ.さらに,この$\alpha$は,$0<\alpha<1$を満たすことを示せ.
(3)(2)の$\alpha$と正の整数$n$に対して,
\[ I_n=\int_0^\alpha (xe^{-nx}+\alpha x^{n-1}) \, dx \]
とおく.$I_n$を$\alpha$の多項式として表せ.また,$\displaystyle \lim_{n \to \infty}n^2 I_n$を求めよ.
三重大学 国立 三重大学 2012年 第1問
実数$x$に対し,$[\,x\,]$を$x$以下の最大の整数とする.すなわち,$[\,x\,]$は整数であり$[\,x\,] \leqq x < [\,x\,]+1$を満たすとする.たとえば,$\displaystyle [\,2\,]=2,\ \left[ \frac{5}{3} \right]=1$である.このとき,以下の問いに答えよ.

(1)すべての実数$a$とすべての整数$m$に対し,$[\,a+m\,]=[\,a\,]+m$が成り立つことを示せ.
(2)数列$\{a_k\}$を$\displaystyle a_k=\left[ \frac{2k}{3} \right] \ (k=1,\ 2,\ \cdots)$と定める.自然数$n$に対して,$\displaystyle \sum_{k=1}^{n}a_k$を求めよ.
三重大学 国立 三重大学 2012年 第2問
$\angle$AOBが直角,$\text{OA}:\text{OB}=2:1$である三角形OABがある.$s$は$0<s<1$とし,辺ABを$s:(1-s)$に内分する点をPとし,OPを$s:(1-s)$に内分する点をQとする.また,線分AQの延長とOBの交点をRとする.$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{BQ}}$が直交するとき,以下の問いに答えよ.

(1)$s$の値を求めよ.
(2)$\overrightarrow{\mathrm{AR}}=t\overrightarrow{\mathrm{AQ}}$とおくとき,$t$の値を求めよ.
(3)三角形OQRの面積と三角形BPQの面積の比を,最も簡単な整数の比で表せ.
三重大学 国立 三重大学 2012年 第4問
以下の問いに答えよ.

(1)関数$y=|\,x\,|-e^{-x}$の増減を調べよ.
(2)実数$\alpha$で$|\,\alpha\,|-e^{-\alpha}=0$を満たすものがひとつだけ存在することを示せ.さらに,この$\alpha$は,$0<\alpha<1$を満たすことを示せ.
(3)(2)の$\alpha$と正の整数$n$に対して,
\[ I_n=\int_0^\alpha (xe^{-nx}+\alpha x^{n-1}) \, dx \]
とおく.$I_n$を$\alpha$の多項式として表せ.また,$\displaystyle \lim_{n \to \infty}n^2 I_n$を求めよ.
香川大学 国立 香川大学 2012年 第4問
$n$を2以上の整数とする.集合$X_n=\{ 1,\ 2,\ \cdots,\ n \}$を2つの空集合ではない部分集合$A_n,\ B_n$に分ける.すなわち,$A_n \cup B_n=X_n,\ A_n \cap B_n = \phi,\ A_n \neq \phi,\ B_n \neq \phi$である.$A_n$に属する自然数の和を$a_n$,$B_n$に属する自然数の和を$b_n$とおく.例えば,$n=5$のとき,$X_5$を$A_5=\{ 1,\ 2,\ 5 \},\ B_5=\{ 3,\ 4 \}$と分ければ,$a_5=8,\ b_5=7$となる.このとき,次の問に答えよ.

(1)$n$が4の倍数のとき,$a_n=b_n$となるように$X_n$を分けられることを示せ.
(2)$n+1$が4の倍数のときも,$a_n=b_n$となるように$X_n$を分けられることを示せ.
(3)$n$も$n+1$も4の倍数ではないとき,$a_n=b_n$となるようには$X_n$を分けられないことを示せ.
島根大学 国立 島根大学 2012年 第4問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
島根大学 国立 島根大学 2012年 第3問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
小樽商科大学 国立 小樽商科大学 2012年 第1問
次の[ ]の中を適当に補いなさい.

(1)$0 \leqq \theta \leqq \pi$のとき,関数$y=(2 \sin \theta-3 \cos \theta)^2-(2 \sin \theta-3 \cos \theta)+1$の最大値$M$と最小値$m$を求めると,$(M,\ m)=[ ]$.
(2)$x^2-4x-3=0,\ x>0$のとき,$2x^4+0x^3+1x^2+2x+2012=p+q\sqrt{7}$を満たす整数$p,\ q$は$(p,\ q)=[ ]$.
(3)平面上に$\mathrm{A}(a,\ b)$,$\mathrm{B}(-2,\ 0)$,$\mathrm{C}(0,\ 0)$がある.点$\mathrm{M}$は線分$\mathrm{AB}$ \\
の中点で点$\mathrm{X}$は線分$\mathrm{AC}$を$(1-t):t$に内分する点である.ただし, \\
$\displaystyle -4<a<0,\ b>0,\ 0<t<\frac{1}{2}$とする.直線$\mathrm{MX}$と直線$\mathrm{BC}$の \\
交点を$\mathrm{P}$,線分$\mathrm{AP}$と直線$\mathrm{BX}$の交点を$\mathrm{Q}$とする.三角形$\mathrm{BCX}$の面積を$S_1$,三角形$\mathrm{XPQ}$の面積を$S_2$とおくと,$\displaystyle \frac{S_1}{S_2}=[ ]$.
\img{2_2_2012_1}{40}
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。