タグ「整数」の検索結果

63ページ目:全1020問中621問~630問を表示)
首都大学東京 公立 首都大学東京 2013年 第2問
$xy$平面で,$x$座標と$y$座標がともに整数である点を格子点という.点$\mathrm{P}$を次のルールで格子点上を移動させる.
\begin{itemize}
さいころをふって出た目が$1$または$2$のとき,$x$軸の正の方向に$1$だけ移動させる.
さいころをふって出た目が$3$または$4$のとき,$y$軸の正の方向に$1$だけ移動させる.
さいころをふって出た目が$5$または$6$のとき,動かさない.
\end{itemize}
以下の問いに答えなさい.ただし,答えのみでなく理由も述べなさい.

(1)点$\mathrm{P}$の最初の座標を$(0,\ 0)$とする.さいころを$3$回ふったあとの$\mathrm{P}$の座標が$(1,\ 1)$である確率を求めなさい.
(2)点$\mathrm{P}$の最初の座標を$(0,\ 0)$とする.さいころを$5$回ふったあとの$\mathrm{P}$の座標を$(m,\ n)$とする.$m$と$n$がともに正で$m+n=3$である確率を求めなさい.
首都大学東京 公立 首都大学東京 2013年 第3問
$a,\ b$は$a<b$を満たす実数とする.正の整数$n$に対し,座標平面上の$(2^n+1)$個の点
\[ \mathrm{P}_k \left( a+\frac{k(b-a)}{2^n},\ \left\{ a+\frac{k(b-a)}{2^n} \right\}^2 \right) \quad \left( k=0,\ 1,\ \cdots,\ 2^n \right) \]
を考える.$X_n$を$\mathrm{P}_0$,$\mathrm{P}_1$,$\cdots$,$\mathrm{P}_{2^n}$,$\mathrm{P}_0$をこの順に結んで得られる$(2^n+1)$角形とし,$X_n$の面積を$S_n$とする.以下の問いに答えなさい.

(1)$S_1$を求めなさい.
(2)$S_2-S_1$,$S_3-S_2$を求めなさい.
(3)$S_n$を求めなさい.
首都大学東京 公立 首都大学東京 2013年 第1問
$1$から$10$までの番号が$1$つずつ重複せずに書かれた$10$枚のカードがあり,左から小さい番号の順に横$1$列に並べてある.この中から,無作為に$2$枚のカードを選び,その場所を入れかえる操作を考える.$n$を正の整数として,この操作を$n$回行ったとき,左端にあるカードに書かれている番号が$1$である確率を$p_n$とする.以下の問いに答えなさい.

(1)$p_1$を求めなさい.
(2)$n$回目の操作のあと,$1$が書かれたカードが左端になく,$(n+1)$回目の操作のあとに$1$が書かれたカードが左端にある確率を$q_n$とするとき,$q_n$を$p_n$を用いて表しなさい.
(3)$p_{n+1}$と$p_n$の間に成り立つ関係式を求めなさい.
(4)$p_n$を$n$を用いて表しなさい.
首都大学東京 公立 首都大学東京 2013年 第2問
$A,\ B,\ P$を実数を成分とする$2$次の正方行列とする.$P$は逆行列をもち,$P^{-1}AP$の$(1,\ 2)$成分と$(2,\ 1)$成分は$0$となるものとする.$P^{-1}AP=\left( \begin{array}{cc}
a_1 & 0 \\
0 & a_2
\end{array} \right)$,$P^{-1}BP=\left( \begin{array}{cc}
b_1 & b_2 \\
b_3 & b_4
\end{array} \right)$とおく.以下の問いに答えなさい.

(1)$a_1 \neq a_2$かつ$AB=BA$が成り立つとき,$b_2=b_3=0$であることを示しなさい.
(2)$A=\left( \begin{array}{cc}
0 & -2 \\
1 & 3
\end{array} \right)$,$P=\left( \begin{array}{cc}
c & 1 \\
-1 & -1
\end{array} \right)$とするとき,$a_1,\ a_2,\ c$の値を求めなさい.
(3)$A,\ P$を(2)で与えた行列とし,$B=\left( \begin{array}{cc}
3 & 2 \\
-1 & 0
\end{array} \right)$とする.正の整数$m,\ n$に対し,$(A^m+B^m)^n$を求めなさい.
会津大学 公立 会津大学 2013年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.

(i) $\displaystyle \int_{-2}^1 x \sqrt{x+3} \, dx=[イ]$

(ii) $\displaystyle \int_0^\pi e^x \sin x \, dx=[ロ]$

(2)$2$つの放物線$y=4x^2$と$y=(x-1)^2$で囲まれた部分の面積は$[ハ]$である.
(3)$\sqrt{-2} \, \sqrt{-3}=[ニ]$である.
(4)方程式$\log_3(x-5)=2-\log_3(x+3)$の解は$x=[ホ]$である.
(5)$0 \leqq x \leqq \pi$において$\displaystyle \sin 2x-\frac{1}{2}=\sin x-\cos x$のとき,$x=[ヘ]$である.
(6)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を重複なく用いて作られる$5$桁の整数を小さい順に並べる.初めて$20000$以上になる整数は$[ト]$で,それは$[チ]$番目である.
高崎経済大学 公立 高崎経済大学 2013年 第3問
以下の各問いに答えよ.

(1)$x$の$2$次不等式$x^2-(a+2)x+2a<0$の解が$1<x<2$となるような定数$a$の値を求めよ.
(2)$x$の$2$次不等式$x^2-(a+2)x+2a<0$と$3x^2+2x-1>0$を同時に満たす整数$x$がただ$1$つ存在するように,定数$a$の範囲を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第2問
不等式$|\log_5x|+\log_5y \leqq 1$の表す座標平面上の領域を$D$とする.以下の問いに答えよ.

(1)領域$D$を図示せよ.
(2)領域$D$に含まれる点のうち,$x$座標と$y$座標がともに整数となるものは全部でいくつあるか答えよ.
福岡女子大学 公立 福岡女子大学 2013年 第1問
箱の中に,赤,青,黄,白,黒の$5$種類の色のボールがそれぞれ$2$個ずつ入っており,全部で$10$個ある.$10$個のボールには異なる番号が付けられている.以下の問に答えなさい.ただし,すべて整数値で解答しなさい.

(1)同時に$3$個取り出す場合の数を求めなさい.
(2)同時に$3$個取り出すとき,赤のボールが含まれる場合の数を求めなさい.
宮城大学 公立 宮城大学 2013年 第2問
次の空欄$[タ]$から$[ト]$にあてはまる数や式を書きなさい.

次のような整数の数列$\{a_n\}$がある.
$1,\ 1,\ 2,\ 1,\ 1,\ 2,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ 4,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ 4,\ 5,\ 4,\ 3,\ 2,\ 1,\ \cdots,\ 1,\ 2,\ 3,\ \cdots,\ n-2,\ n-1,\ n,\ n-1,\ \cdots,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ \cdots$
ここで,$a_1=1$だけからなる群を第$1$群,$a_2=1,\ a_3=2,\ a_4=1$からなる群を第$2$群と呼ぶことにする.一般に,$1,\ 2,\ 3,\ 4,\ \cdots,\ k-1,\ k,\ k-1,\ \cdots,\ 3,\ 2,\ 1$からなる群を第$k$群と呼ぶことにする.
このとき,以下の問いに答えなさい.
(1)第$n$群の項数を$n$を用いて表せば$[タ]$個となる.
(2)第$n$群に属する項すべての整数の和を$n$を用いて表せば$[チ]$となる.
(3)整数$7$が,数列$\{a_n\}$の初項から「第$n$群に含まれる最後の項」までの間に現れる回数を$n$を用いて表せば$[ツ]$回となる.ただし,$n$は$7$以上の自然数とする.
(4)数列$\{a_n\}$の第$364$項は第$[テ]$群に属し,その第$[テ]$群の先頭から$[ト]$番目の項である.
名古屋市立大学 公立 名古屋市立大学 2013年 第1問
$m$を整数として,二次関数$f(x)=x^2+mx+3$を考える.次の問いに答えよ.

(1)$f(x)=0$の解がすべて整数となる$2$個の$m$の値$m_1,\ m_2$を求めよ.
(2)$g(x)=\min (x^2+m_1x+3,\ x^2+m_2x+3)$としたとき,$x$軸と曲線$y=g(x)$によって囲まれる図形の面積を求めよ.ただし,$\min (a,\ b)$は$a,\ b$のうち大きくない方の値を表す.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。