タグ「整数」の検索結果

61ページ目:全1020問中601問~610問を表示)
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第4問
以下の命題が真であれば証明し,偽であれば反例をあげて偽であることを説明しなさい.

(1)$p$を,$4$で割ると$3$余る素数とする.このとき,$2p+1$は$3$の倍数であるか,または素数である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の成分と,$A$の逆行列$A^{-1}$の成分がすべて整数であるとする.このとき,$|ad-bc|=1$である.
杏林大学 私立 杏林大学 2013年 第4問
$[オ]$,$[タ]$,$[チ]$,$[ト]$,$[ナ]$の解答は対応する解答群の中から最も適当なものを$1$つ選べ.

条件$a_1=0$,$a_2=0$と漸化式
\[ a_{n+2}-3a_{n+1}+2a_n=2^n \log_2 \frac{(n+1)^2}{n} \cdots\cdots (*) \]
$(n=1,\ 2,\ 3,\ \cdots)$で定められる数列の一般項を,以下の要領で求めてみよう.

(1)漸化式$(*)$より,ベクトル$\overrightarrow{b_n}=\left( \begin{array}{c}
a_{n+1} \\
a_n
\end{array} \right)$に対して
\[ \overrightarrow{b_{n+1}}=A \overrightarrow{b_n}+\left( \begin{array}{c}
2^n \log_2 \displaystyle\frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
が成立する.ただし,行列$A$は$A=\left( \begin{array}{cc}
[ア] & [イウ] \\
[エ] & 0
\end{array} \right)$である.
この式の両辺に,$A$の逆行列$A^{-1}$を左から$n$回かけると
\[ (A^{-1})^n \overrightarrow{b_{n+1}}=(A^{-1})^{n-1} \overrightarrow{b_n}+(A^{-1})^n \left( \begin{array}{c}
\displaystyle 2^n \log_2 \frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
となり,$(A^{-1})^{n-1} \overrightarrow{b_n}$の階差数列がわかる.これより,$2$以上の整数$n$に対し,
\[ (A^{-1})^{n-1} \overrightarrow{b_{n}}=\overrightarrow{b_1}+\sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right) \cdots\cdots (**) \]
を得る.
(2)$(**)$式の右辺第一項は$\overrightarrow{b_1}=\left( \begin{array}{c}
[カ] \\
[キ]
\end{array} \right)$であり,$\displaystyle A^{-1}=\frac{1}{2} \left( \begin{array}{cc}
[ク] & [ケ] \\
[コサ] & [シ]
\end{array} \right)$は行列$P=\left( \begin{array}{cc}
2 & 1 \\
1 & 1
\end{array} \right)$を用いて
\[ A^{-1}=P \left( \begin{array}{cc}
\displaystyle\frac{[ス]}{[セ]} & 0 \\
0 & [ソ]
\end{array} \right) P^{-1} \]
と表されるので,$(**)$式右辺の和の項について,次式が成立する.
\[ \sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right)=P \left( \begin{array}{c}
\log_2 [タ] \\
-2^n \log_2 [チ]
\end{array} \right) \]
(3)$(2)$の結果と,行列$A$が同じ$P$を用いて
\[ A=P \left( \begin{array}{cc}
[ツ] & 0 \\
0 & [テ]
\end{array} \right) P^{-1} \]
と表わされることに注意すると,$(**)$式の両辺に行列$A$を左から$(n-1)$回かけて得られる$\overrightarrow{b_n}$から,一般項$a_n$は
\[ a_n=2^{[ト]} \log_2 [ナ] \]
($n=2,\ 3,\ 4,\ \cdots$)となる.

$[オ]$,$[ト]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan n+1 & \nagamarushi 1-n \\
\nagamarugo -n & \nagamaruroku -n-1 \phantom{AA} & \nagamarushichi \displaystyle\frac{n(n+1)}{2} \phantom{AA} & \nagamaruhachi n^2-1 \\
\nagamarukyu \displaystyle\frac{1}{6}n(n+1)(2n+1) & & &
\end{array} \]
$[タ]$,$[チ]$,$[ナ]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan \displaystyle\frac{n+1}{n} \phantom{AA} & \nagamarushi \displaystyle\frac{4n-6}{n} \\
\nagamarugo n^2-4n+5 & \nagamaruroku (n-1)! \phantom{AA} & \nagamarushichi n! \phantom{AA} & \nagamaruhachi n!-1 \\
\nagamarukyu (n-1) \times n! \phantom{AA} & \nagamarurei n \times n! & &
\end{array} \]
大同大学 私立 大同大学 2013年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.ただし,根号内の平方因数は根号外にくくり出し,分数は既約分数で表すこと.

(1)放物線$C:y=x^2+ax+b$が点$(5,\ 8)$を通るとすると,$b=-[ ] a-[][]$である.さらに,$C$の頂点が$y$軸上にあるとき$a=[ ]$,$b=-[][]$であり,$C$の頂点が$x$軸上にあるとき$a=-[][] \pm [ ] \sqrt{[ ]}$である.
(2)$2a^2-ab-15b^2=([ ] a+[ ] b)(a-[ ] b)$である.$a=3 \sqrt{6}+5 \sqrt{2}$,$b=\sqrt{6}-2 \sqrt{2}$のとき,$2a^2-ab-15b^2=[][][] \sqrt{[ ]}$である.
(3)$\triangle \mathrm{ABC}$において$\mathrm{AB}=5$,$\mathrm{BC}=6$,$\mathrm{CA}=3$とするとき,$\displaystyle \cos A=-\frac{[ ]}{[][]}$であり,$\triangle \mathrm{ABC}$の面積は$[ ] \sqrt{[][]}$である.さらに,$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線の足を$\mathrm{H}$とすると,$\displaystyle \mathrm{AH}=\frac{[ ] \sqrt{[][]}}{[ ]}$である.
(4)$1$から$20$までの整数の中から異なる$2$個の整数$a,\ b (a<b)$を選ぶとき,$a,\ b$の積が奇数になる選び方は$[][]$通りあり,$3$の倍数でない選び方は$[][]$通りある.また,$a,\ b$の積が$3$の倍数でない奇数になる選び方は$[][]$通りあり,$3$の倍数でない偶数になる選び方は$[][]$通りある.
大阪薬科大学 私立 大阪薬科大学 2013年 第1問
次の問いに答えなさい.

(1)$2$次方程式$x^2+x+p=0$の$2$解$\alpha,\ \beta$に対して$\alpha^2-\beta^2=3$となるとき,$p=[ ]$である.
(2)$xy$座標平面上で,$x$座標と$y$座標がいずれも整数である点を格子点という.$x \geqq 0$,$y \geqq 0$,$x+2y \leqq 100$を同時に満たす格子点の個数は$[ ]$である.
(3)関数$f(x)=a(\log_3 x)^2+\log_9 bx$が,$\displaystyle x=\frac{1}{3}$で最小値$\displaystyle \frac{1}{4}$をとるとき,$(a,\ b)=[ ]$である.
(4)関数$\displaystyle y=2 \sin \left( 2x+\frac{\pi}{2} \right)$のグラフを描きなさい.
(5)表と裏が等確率で出るコインを$n$回投げ,表が出る回数が$0$回ならば$0$点,$1$回ならば$x$点,$2$回以上ならば$y$点とするゲームを考え,その点数の期待値を$E_n$とする.$n \geqq 2$の$n$に対して,不等式$E_n \geqq y$が$n$によらずに成り立つとき,$x$と$y$の間の関係を調べなさい.ただし,$x$と$y$は正とする.
九州産業大学 私立 九州産業大学 2013年 第5問
関数$\displaystyle f_n(x)=\frac{1}{x(1+x)^n} (-1<x<0)$とおく.ただし,$n$は正の整数とし,$C$は積分定数とする.

(1)導関数$\displaystyle \frac{d}{dx}f_n(x)=[ア]$である.
(2)関数$f_n(x)$は$x=[イ]$において極値をとる.

(3)$\displaystyle \int f_1(x) \, dx=[ウ]+C$である.

(4)$\displaystyle \int f_{n+1}(x) \, dx-\int f_n(x) \, dx=[エ]+C$である.

(5)$\displaystyle \int f_3(x) \, dx=[オ]+C$である.
広島工業大学 私立 広島工業大学 2013年 第5問
次の各問いに答えよ.

(1)$2$次不等式$3x^2-5x-12 \leqq 0$を満たす整数$x$をすべて求めよ.
(2)放物線$y=3x^2$を$x$軸方向へ$a$,$y$軸方向へ$b$だけ平行移動したグラフが$2$点$(-6,\ 0)$,$(2,\ 0)$を通るとき,定数$a,\ b$の値を求めよ.
(3)$1$つのさいころを$3$回投げて出た目の最小値が$3$である確率を求めよ.
桜美林大学 私立 桜美林大学 2013年 第1問
次の問いに答えよ.

(1)$x$についての不等式$\displaystyle \frac{2x-a}{3}<\frac{x-3}{2}$をみたす最大の整数が$3$となるような実数の定数$a$がとり得る値の範囲を次の$①$~$⑤$から選ぶと$[ア]$である.
\[ ① 6<a \quad ② 6 \leqq a \quad ③ 6<a<\frac{13}{2} \quad ④ 6 \leqq a<\frac{13}{2} \quad ⑤ 6<a \leqq \frac{13}{2} \]
(2)$1000$以下の自然数で,$3$または$5$で割りきれる数は$[イ][ウ][エ]$個であり,そのうち偶数でないものは$[オ][カ][キ]$個ある.
(3)$2$つの方程式$x^2-2ax+2a^2+a-2=0$と$x^2+(2a+2)x-a+1=0$がともに実数解をもつような定数$a$の値の範囲は$[ク] \leqq a \leqq [ケ]$である.
(4)$0 \leqq x \leqq \pi$とする.関数$y=4 \sin x+3 \cos x$の最小値は$[コ]$であり,$y$の最大値を与える$x$の値を$\theta$とすると,$\displaystyle \sin 2\theta=\frac{[サ][シ]}{[ス][セ]}$である.
(5)$x$の関数$f(x)$が$\displaystyle f(x)=\int_0^1 xtf(t) \, dt+2$を満たすとき,$\displaystyle f(x)=\frac{[ソ]}{[タ]}x+[チ]$である.
成城大学 私立 成城大学 2013年 第1問
座標平面において,$x$座標,$y$座標がともに整数である点を格子点と呼ぶ.いま,$4$つの格子点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ b)$,$\mathrm{B}(a,\ b+4)$,$\mathrm{C}(0,\ b+4)$を考える.ただし,$a$と$b$は互いに素な自然数とする.

(1)線分$\mathrm{OA}$上には,点$\mathrm{O}$,$\mathrm{A}$以外の格子点は存在しないことを示せ.
(2)四角形$\mathrm{OABC}$の$4$辺上に格子点はいくつあるか.
(3)四角形$\mathrm{OABC}$の内部(辺,頂点は含まない)に格子点はいくつあるか.
東京女子大学 私立 東京女子大学 2013年 第2問
座標平面において$\displaystyle y=\frac{3}{4}x$,$0 \leqq x \leqq 100$で定まる線分を$L$とする.

(1)$L$上の点で$x$座標,$y$座標がともに整数であるものは何個あるか.
(2)整数$a,\ b$を用いて$a-1 \leqq x \leqq a$,$b-1 \leqq y \leqq b$で表される正方形のうち,$L$と共有点を持つものは何個あるか.
東京女子大学 私立 東京女子大学 2013年 第7問
座標平面において点$\displaystyle \mathrm{A}_n \left( 1,\ \frac{1}{n} \right)$,$\displaystyle \mathrm{B} \left( 1-\frac{1}{n},\ 0 \right)$および$\mathrm{O}(0,\ 0)$を頂点とする三角形$\mathrm{OA}_n \mathrm{B}_n$の外接円の半径を$R_n$とおく.ただし$n$は$2$以上の整数とする.

(1)$R_n$を$n$の式で表せ
(2)$\displaystyle \lim_{n \to \infty} R_n$を求めよ.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。