タグ「整数」の検索結果

60ページ目:全1020問中591問~600問を表示)
北里大学 私立 北里大学 2013年 第2問
行列$A,\ B$を$A=\left( \begin{array}{cc}
1 & 2 \\
2 & 4
\end{array} \right)$,$B=\left( \begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array} \right)$とおく.以下の問に答えよ.

(1)$B^2,\ AB,\ BA$を求めよ.
(2)正の整数$n$に対して,$A^n$を求めよ.
(3)正の整数$n$に対して,$(A-2B)^n$を求めよ.
北里大学 私立 北里大学 2013年 第1問
次の$[ ]$にあてはまる答を記せ.ただし,$(5)$において,必要ならば$\log_{10}2=0.3010$を用いてよい.

(1)$\mathrm{OA}:\mathrm{OB}=1:3$である三角形$\mathrm{OAB}$において,辺$\mathrm{AB}$の中点を$\mathrm{M}$,線分$\mathrm{OM}$を$1:2$に内分する点を$\mathrm{N}$とし,$\angle \mathrm{AOB}$の大きさを$\theta$とする.

(i) $\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{a}$と$\overrightarrow{b}$を用いて$\overrightarrow{\mathrm{NA}}$を表すと,$\overrightarrow{\mathrm{NA}}=[ ] \overrightarrow{a}-[ ] \overrightarrow{b}$である.
(ii) $\overrightarrow{\mathrm{ON}}$と$\overrightarrow{\mathrm{NA}}$が垂直であるとき,$\cos \theta$の値は$[ ]$である.

(2)$(x+2y+3z)^6$の展開式における$x^4y^2$の係数は$[ ]$であり,$x^3y^2z$の係数は$[ ]$である.
(3)点$(x,\ y)$が不等式$x^2+y^2 \leqq 4$の表す領域を動くとする.このとき,$3x+y$は,$x=[ ]$,$y=[ ]$において最大値$[ ]$をとり,$x=[ ]$,$y=[ ]$において最小値$[ ]$をとる.
(4)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つの袋があり,$\mathrm{A}$には赤球$2$個と白球$2$個,$\mathrm{B}$には白球$1$個と青球$3$個,さらに,$\mathrm{C}$には赤球$2$個と白球$1$個と青球$1$個が入っている.いま,$\mathrm{A}$から$1$個の球を取り出し,$\mathrm{B}$から$1$個の球を取り出し,$\mathrm{C}$から$1$個の球を取り出す.

(i) 取り出した$3$個の球の色が$1$種類となる確率は$[ ]$である.
(ii) 取り出した$3$個の球の色が$2$種類となる確率は$[ ]$である.
(iii) 取り出した$3$個の球の色が$3$種類となる確率は$[ ]$である.

(5)条件$a_1=5$,$a_{n+1}=2a_n-3$によって定まる数列$\{a_n\}$の一般項は$a_n=[ ]$で与えられる.この数列の初項から第$n$項までの和を$S_n$とおくとき,$S_8$の値は$[ ]$であり,不等式$\displaystyle \frac{S_n}{3}>n+16666$を満たす正の整数$n$のうちで最小のものは$[ ]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2013年 第1問
次の問いに答えよ.

(1)$0 \leqq \theta<2\pi$とする.$2 \sin^2 \theta-3 \cos \theta-3 \geqq 0$を満足する$\theta$の範囲は$[ ]$であり,この$\theta$に対する$\tan \theta$の最大値は$[ ]$である.
(2)数字$1$のカード$1$枚,数字$3$のカード$2$枚,数字$a$($a$は$1,\ 3,\ 6$以外の正の整数)のカード$2$枚,数字$6$のカード$b$枚の中から無作為に$1$枚のカードを取り出したとき,そのカードに記された数字の期待値が$\displaystyle \frac{9}{2}$になった.このとき$(a,\ b)$の組をすべて求めると$(a,\ b)=[ ]$である.
(3)$f(x)=x^6-2x^4-x^2+2$とする.$f(x)$を整数の範囲で因数分解すると$[ ]$となり,複素数の範囲で因数分解すると$[ ]$となる.
千葉工業大学 私立 千葉工業大学 2013年 第1問
次の各問に答えよ.

(1)$\mathrm{A}$地点から$15 \, \mathrm{km}$離れた$\mathrm{B}$地点まで行くのに,初めは時速$4 \, \mathrm{km}$で歩き,途中から時速$6 \, \mathrm{km}$で歩くことにする.$\mathrm{A}$地点を出発後,$3$時間以内に$\mathrm{B}$地点に到着するためには,時速$4 \, \mathrm{km}$で歩ける距離は最大で$[ア] \, \mathrm{km}$である.
(2)半径$2 \sqrt{6}$の円に内接する正三角形の$1$辺の長さは$[イ] \sqrt{[ウ]}$である.
(3)中心が$(-2,\ 3)$で,$y$軸に接する円の方程式は$x^2+y^2+[エ]x-[オ]y+[カ]=0$である.
(4)$3^n$の一の位の数字が$1$になる正の整数$n$の最小値は$[キ]$であり,$3^{102}$の一の位の数字は$[ク]$である.
(5)数直線上の集合$A=\{x \;|\; 2<x<9 \}$,$B=\{x \;|\; k<x<k+2 \}$(ただし,$k$は定数)において,$A \cap B$が空集合となるような$k$の値の範囲は$k \leqq [ケ]$または$[コ] \leqq k$である.
(6)白玉$3$個,赤玉$5$個の計$8$個の玉が入った箱の中から同時に$4$個の玉を取り出すとき,白玉も赤玉もともに取り出される確率は$\displaystyle \frac{[サシ]}{[スセ]}$である.
(7)方程式$\displaystyle 9^x=\frac{3}{27^x}$の解は$\displaystyle x=\frac{[ソ]}{[タ]}$である.
(8)関数$f(x)=-2x^3-6x^2+9$の極大値は$[チ]$,極小値は$[ツ]$である.
沖縄国際大学 私立 沖縄国際大学 2013年 第3問
以下の各問いに答えなさい.

(1)次の命題$(ⅰ)$~$\tokeijyu$の真偽を書きなさい.

(i) 自然数ならば偶数である.
(ii) 食べ物ならば果物である.
(iii) 人間でないならば動物ではない.
\mon[$\tokeishi$] 整数ならば実数である.
\mon[$\tokeigo$] $|2x^2-5x-3|>0$ならば$x \neq 3$である.
\mon[$\tokeiroku$] $x^2=9$ならば$x=3$である.
\mon[$\tokeishichi$] $2$の倍数ならば$4$の倍数である.
\mon[$\tokeihachi$] $x+y>0$ならば$x>0$かつ$y>0$である.
\mon[$\tokeikyu$] $A \cap B=\phi$ならば$A \neq B$である.
\mon[$\tokeijyu$] $A=\{2x \;|\; 1 \leqq x \leqq 10,\ x \text{は自然数} \}$,$B=\{2y+2 \;|\; 1 \leqq y \leqq 10,\ y \text{は自然数} \}$ならば$A \subset B$である.

(2)以下の図において$A \cup B$の部分を塗りつぶしなさい.
(図は省略)
(3)$2x^2-x-1=0$の必要条件を次の$(ⅰ)$~$\tokeishi$からすべて選び,解答欄に記号で答えなさい.

(i) $x<0$
(ii) $x$は素数である.
(iii) $|x| \leqq 1$
\mon[$\tokeishi$] $x$は実数である.

(4)命題「$(x-1)^2=0$ならば$x=-1$または$x=1$」の逆,裏,対偶を解答欄に書きなさい.またこの命題の真偽を書き,偽のときは反例を挙げなさい.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a,\ b$を定数とする.座標平面において,$x^2+y^2+ax+by=0$は中心を点$([ ],\ [ ])$とする半径$[ ]$の円の方程式である.サイコロを$2$度投げ,最初に出た目を$a$とし,次に出た目を$b$とする.この円の内部の面積が$4 \pi$以下である確率は$[ ]$である.また,この円が直線$x+y=a-b$と異なる$2$点で交わる確率は$[ ]$である.
(2)$2013$を素因数分解すると$[ ]$である.$x=[ ]$,$y=0$は,方程式$11x+25y=2013$をみたす.$x,\ y$を共に$0$以上の整数とするとき,方程式$11x+25y=2013$をみたす$(x,\ y)$の組は全部で$[ ]$組あり,それらの中で$x^2+y^2$の値が最大になるのは$x=[ ]$,$y=[ ]$のときである.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

サッカーの国際大会に日本,$\mathrm{A}$国および$\mathrm{B}$国の$3$ヶ国が参加し,優勝国は次のように決定される.
(i) $3$つの国のうち$2$つの国が試合をする.勝った国が残りの$1$つの国と試合をし, $2$連勝する国が生じるまで試合を繰り返す.この連勝国を優勝国とし,大会を終了する.
(ii) 各試合において,引き分けは無く,必ず勝敗が決まる.
日本が$\mathrm{A}$国,$\mathrm{B}$国に勝つ確率をそれぞれ$\displaystyle \frac{1}{2},\ \frac{1}{3}$とし,$\mathrm{A}$国が$\mathrm{B}$国に勝つ確率は$\displaystyle \frac{2}{3}$とする.第$1$戦は日本と$\mathrm{A}$国が対戦する.
第$2$戦で日本が優勝する確率は$[ ]$であり,第$3$戦で日本が優勝する確率は$[ ]$であり,第$4$戦で日本が優勝する確率は$[ ]$であり,第$5$戦で日本が優勝する確率は$[ ]$である.ゆえに第$3n+2$戦($n$は$0$以上の整数)で日本が優勝する確率$p_n$は$p_n=[ ]$となる.このとき$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n p_k=[ ]$となる.一方,第$7$戦で日本が優勝する確率は$[ ]$となる.第$3n+1$戦($n$は$1$以上の整数)で日本が優勝する確率$q_n$は$q_n=[ ]$となる.このとき$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n q_k=[ ]$となる.また第$3n$戦($n$は$1$以上の整数)で日本が優勝する確率$r_n$は$r_n=[ ]$となる.
安田女子大学 私立 安田女子大学 2013年 第1問
次の問いに答えよ.

(1)$(-2x^2y)^2(-xy^2)^3(-3xy)^2$を計算せよ.
(2)$2x-|x+1|=3$を解け.
(3)正七角形の内角の和を求めよ.
(4)方程式$xy-3x-y+1=0$を満たす整数$(x,\ y)$の組をすべて求めよ.
吉備国際大学 私立 吉備国際大学 2013年 第1問
次の問いに答えよ.

(1)$x^2+4xy+3y^2-2x-8y-3$を因数分解せよ.
(2)$1,\ 1,\ 1,\ 1,\ 2,\ 2,\ 3,\ 3$の$8$個の数字を用いて作ることができる$8$桁の整数の個数を求めよ.
(3)$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=7$のとき$\cos \angle \mathrm{B}$を求めよ.
(4)放物線$y=x^2+2x-1$を原点に関して,対称移動したときの放物線の式を求めよ.
(5)$2$次関数$y=-x^2+6x-9$の最大値,最小値があれば,それを求めなさい.
吉備国際大学 私立 吉備国際大学 2013年 第2問
$a,\ b$は互いに素な整数とする.

(1)もし$a^2=2b^2 \cdots\cdots①$が成立するなら,$a$は偶数であることを証明せよ.
(2)$①$の$b$も偶数であることを証明せよ.
(3)$①$が成立することはないということを証明せよ.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。