タグ「整数」の検索結果

57ページ目:全1020問中561問~570問を表示)
岐阜大学 国立 岐阜大学 2013年 第6問
中心を点$\mathrm{O}$とする半径$1$の円に内接する正六角形$H_1$があり,その頂点を反時計回りに$\mathrm{A}_1$,$\mathrm{B}_1$,$\mathrm{C}_1$,$\mathrm{D}_1$,$\mathrm{E}_1$,$\mathrm{F}_1$とする.辺$\mathrm{A}_1 \mathrm{B}_1$上に点$\mathrm{A}_2$を$\angle \mathrm{A}_1 \mathrm{OA}_2=15^\circ$を満たすようにとり,辺$\mathrm{B}_1 \mathrm{C}_1$上に点$\mathrm{B}_2$を$\angle \mathrm{B}_1 \mathrm{OB}_2=15^\circ$を満たすようにとる.同様に,図のように辺$\mathrm{C}_1 \mathrm{D}_1$,$\mathrm{D}_1 \mathrm{E}_1$,$\mathrm{E}_1 \mathrm{F}_1$,$\mathrm{F}_1 \mathrm{A}_1$上にそれぞれ点$\mathrm{C}_2$,$\mathrm{D}_2$,$\mathrm{E}_2$,$\mathrm{F}_2$をとり,点$\mathrm{A}_2$から点$\mathrm{F}_2$を頂点とする正六角形を$H_2$とおく. \\
上の操作を再び正六角形$H_2$に対して行い,辺$\mathrm{A}_2 \mathrm{B}_2$,$\mathrm{B}_2 \mathrm{C}_2$,$\mathrm{C}_2 \mathrm{D}_2$,$\mathrm{D}_2 \mathrm{E}_2$,$\mathrm{E}_2 \mathrm{F}_2$,$\mathrm{F}_2 \mathrm{A}_2$上にそれぞれ点$\mathrm{A}_3$,$\mathrm{B}_3$,$\mathrm{C}_3$,$\mathrm{D}_3$,$\mathrm{E}_3$,$\mathrm{F}_3$をとり,これらを頂点とする正六角形を$H_3$とおく.同様に$3$以上の整数$n$に対して,上の操作を正六角形$H_n$に行うことにより得られる正六角形を$H_{n+1}$とおく.以下の問に答えよ.
(図は省略)

(1)辺$\mathrm{OA}_2$の長さを求めよ.
(2)正六角形$H_2$の面積$S_2$を求めよ.
(3)正六角形$H_n$の面積$S_n$を$n$を用いて表せ.
長崎大学 国立 長崎大学 2013年 第3問
$n$を$2$以上の整数とする.$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$が与えられたとき,
\[ P_n=(a_1+a_2+\cdots +a_n)^2,\quad Q_n={a_1}^2+{a_2}^2+\cdots +{a_n}^2 \]
とおく.次に,$1 \leqq i<j \leqq n$を満たすすべての番号$i,\ j$に対する$a_ia_j$の和を$R_n$とする.たとえば,$R_2=a_1a_2$,$R_3=a_1a_2+a_1a_3+a_2a_3$である.同様に,$1 \leqq i<j \leqq n$を満たすすべての番号$i,\ j$に対する$(a_i-a_j)^2$の和を$S_n$とする.たとえば,$S_2=(a_1-a_2)^2$,$S_3=(a_1-a_2)^2+(a_1-a_3)^2+(a_2-a_3)^2$である.次の問いに答えよ.

(1)$P_4$を$Q_4$と$R_4$を使って表せ.
(2)すべての$n \geqq 2$に対して$S_n=(n-1)Q_n-2R_n$と表されることを,数学的帰納法で証明せよ.
(3)$Q_4$を$P_4$と$S_4$を使って表せ.
(4)$a_1+a_2+a_3+a_4=1$のとき,$Q_4$の最小値と,そのときの$a_1,\ a_2,\ a_3,\ a_4$の値をそれぞれ求めよ.
鳴門教育大学 国立 鳴門教育大学 2013年 第1問
$5$で割ったときの商が余りよりも小さくかつ$0$以上の整数であるような正の整数をすべて求めよ.
京都教育大学 国立 京都教育大学 2013年 第5問
百の位が$a$,十の位が$b$,一の位が$c$である$1$以上$999$以下の整数がある.ただし,この整数が$99$以下のときは百の位が$0$であるとみなし,さらに$9$以下のときは十の位も$0$であるとみなす.この整数が各位の数の和の$3$乗に等しいとき次の問に答えよ.

(1)$(a+b+c)^3-(a+b+c)$は$9$の倍数であることを証明せよ.
(2)多項式$(x+y+z)^3-(x+y+z)$を因数分解せよ.
(3)このような整数をすべて求めよ.
三重大学 国立 三重大学 2013年 第4問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに動くとする.$n$を正の整数として,$\mathrm{A}$から出発して$n$秒後に$\mathrm{A}$に戻る経路の数を$\alpha_n$,$\mathrm{A}$から出発して$n$秒後に$\mathrm{B}$に到達する経路の数を$\beta_n$とする.このとき,$\mathrm{A}$から出発して$n$秒後に$\mathrm{C}$に到達する経路の数も,$\mathrm{D}$に到達する経路の数も$\beta_n$となる.このことに注意して,以下の問いに答えよ.ただし$\alpha_0=1$,$\beta_0=0$とする.

(1)$\alpha_2,\ \beta_2,\ \alpha_2+3 \beta_2,\ \alpha_3,\ \beta_3,\ \alpha_3+3 \beta_3$を求めよ.
(2)$n \geqq 1$に対し$\alpha_n,\ \beta_n$を$\alpha_{n-1},\ \beta_{n-1}$で表せ.
(3)$c_n=\alpha_n-\beta_n$とおいて$c_n$の一般項を求めよ.
(4)$\alpha_n$の一般項を求めよ.
自治医科大学 私立 自治医科大学 2013年 第3問
$47^{100}$は$168$桁の整数である.$47^{17}$の桁数を$(20+n)$で表すとき,$n$の値を求めよ.ただし,$n$は自然数とする.
東北学院大学 私立 東北学院大学 2013年 第1問
次の各問題の$[ ]$に適する答えを記入せよ.

(1)$\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}$を簡単にすると$[ア]$となる.
(2)$(0.98)^n<0.5$となる最小の整数$n$は$[イ]$である.ただし$\log_{10}2=0.3010$,$\log_{10}7=0.8451$とする.
(3)和$\displaystyle \frac{1}{2 \cdot 5}+\frac{1}{5 \cdot 8}+\frac{1}{8 \cdot 11}+\cdots+\frac{1}{(3n-1)(3n+2)}$を求めると$[ウ]$となる.
自治医科大学 私立 自治医科大学 2013年 第9問
$m,\ n (n>0)$は整数とする.$m^2-6m+1+2n=0$をみたす整数の組$(m,\ n)$は,何個あるか.
自治医科大学 私立 自治医科大学 2013年 第10問
$x^2+(5-m)x-2m+7=0$が虚数解をもつように,整数$m$を定めたとき,$m$の最大値を求めよ.
北海学園大学 私立 北海学園大学 2013年 第5問
数列$a_1,\ a_2,\ \cdots,\ a_n$は,$1$から$2n-1$までの異なる$n$個の奇数を並べかえたものである.また,数列$b_1,\ b_2,\ \cdots,\ b_n$は,$2$から$2n$までの異なる$n$個の偶数を並べかえたものである.$S_n=a_1b_1+a_2b_2+\cdots +a_nb_n$とするとき,次の問いに答えよ.ただし,$n$は$3$以上の整数とする.

(1)$n=3$であり,$b_1=4$,$b_2=6$,$b_3=2$のとき,$S_3$を最大にする$a_1,\ a_2,\ a_3$を求めよ.

(2)$\displaystyle \sum_{k=1}^n 2ka_k+\sum_{k=1}^n \frac{(a_k-2k+1)^2}{2}$を$n$を用いて表せ.

(3)$b_k=2k (k=1,\ 2,\ 3,\ \cdots,\ n)$とする.$S_n$を最大にする$a_k$を$k$を用いて表せ.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。