タグ「整数」の検索結果

39ページ目:全1020問中381問~390問を表示)
富山大学 国立 富山大学 2014年 第1問
次の条件$(ⅰ)$,$(ⅱ)$,$(ⅲ)$を同時に満たす整数の組$(x,\ y)$をすべて求めよ.

(i) $y$は$x$の整数倍である
(ii) $x \geqq 2$
(iii) $x^2+6!=y^2$
富山大学 国立 富山大学 2014年 第1問
次の条件$(ⅰ)$,$(ⅱ)$,$(ⅲ)$を同時に満たす整数の組$(x,\ y)$をすべて求めよ.

(i) $y$は$x$の整数倍である
(ii) $x \geqq 2$
(iii) $x^2+6!=y^2$
琉球大学 国立 琉球大学 2014年 第3問
整数$m,\ n$は$m \geqq 1$,$n \geqq 2$をみたすとする.次の問いに答えよ.

(1)$x>0$のとき,$y=\log x$の第$1$次導関数$y^\prime$と第$2$次導関数$y^{\prime\prime}$を求めよ.
(2)座標平面上の$3$点$\mathrm{A}(m,\ \log m)$,$\mathrm{B}(m+1,\ \log m)$,$\mathrm{C}(m+1,\ \log (m+1))$を頂点とする三角形の面積を$S_m$とする.$S_m$を$m$を用いて表せ.
(3)$\displaystyle f(m)=\log m+S_m-\int_m^{m+1} \log x \, dx$とおく.$f(m)<0$が成り立つことを,$y=\log x$のグラフを用いて説明せよ.
(4)$f(1)+f(2)+\cdots +f(n-1)<0$であることを用いて,不等式
\[ \log 1+\log 2+\cdots +\log (n-1)<n \log n-n+1-\frac{1}{2} \log n \]
を証明せよ.
(5)不等式$\displaystyle n!<e \sqrt{n} \left( \frac{n}{e} \right)^n$を証明せよ.ただし,$e$は自然対数の底である.
琉球大学 国立 琉球大学 2014年 第4問
$1$個のさいころを繰り返し投げて景品を当てるゲームを行う.景品は$\mathrm{A}$と$\mathrm{B}$の$2$種類あり,次の規則にしたがって景品をもらえるとする.
\begin{itemize}
出た目の数が$6$のときは,景品$\mathrm{A}$をもらえる.
出た目の数が$4,\ 5$のときは,景品$\mathrm{B}$をもらえる.
出た目の数が$1,\ 2,\ 3$のときは,景品はもらえない.
景品$\mathrm{A}$と景品$\mathrm{B}$の$2$種類とももらうことができたらゲームは終了する.
\end{itemize}
ちょうど$n$回さいころを投げ終わったところでゲームが終了する確率を$p_n$とする.次の問いに答えよ.

(1)$p_2$の値を求めよ.
(2)$n$を$2$以上の整数とする.$p_n$を$n$を用いて表せ.
(3)$n$を$2$以上の整数とする.不等式
\[ p_{n+1}-p_n<\frac{2}{3}(p_n-p_{n-1}) \]
を示せ.ただし,$p_1=0$とする.
三重大学 国立 三重大学 2014年 第5問
実数$a$に対して,下の$4$つの条件$p,\ q,\ r,\ s$を考える.ただし,実数$k$に対して,$[k]$は$k$以下の最大の整数を表し,$\langle k \rangle$は$k$以上の最小の整数を表すとする.たとえば,$k=2.15$のとき,$[k]=2$であり,$\langle k \rangle=3$である.また,$|k|$は$k$の絶対値を表す.

$p:x^2+4x+a^2=0$を満たす実数$x$が存在する.
$q:[a]<\langle a \rangle$
$\displaystyle r:|a-1.5|<\frac{1}{|a-1.5|+1.5}$
$\displaystyle s:0<a<\pi$,かつ,$\displaystyle \sin \left( 2a-\frac{\pi}{4} \right)+\sin \left( 2a+\frac{\pi}{4} \right)=0$

上の$p,\ q,\ r,\ s$それぞれについて,条件を満たす$a$の範囲を求めよ.さらに,以下の$①$,$②$,$③$それぞれについて,$p,\ q,\ r,\ s$の中から,あてはまるものを全て答えよ.

$①$ $p$であるための十分条件である.
$②$ $q$であるための十分条件である.
$③$ $r$であるための十分条件である.
岐阜大学 国立 岐阜大学 2014年 第5問
数列$\{a_n\}$を
\[ a_1=\frac{3}{4},\quad a_{n+1}=1-\frac{1}{4a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.以下の問に答えよ.

(1)$a_2,\ a_3,\ a_4,\ a_5,\ a_6$を求めよ.また,それより一般項$a_n$を推定せよ.
(2)数学的帰納法により,$(1)$の一般項の推定が正しいことを証明せよ.
(3)$n$を正の整数とする.すべての実数$x$に対して,不等式
\[ a_nx^2+x+1 \geqq a_{n+1} \]
が成り立つことを示せ.
(4)$n$を正の整数とする.すべての実数$x$に対して,不等式
\[ x^{2n}+x^{2n-1}+x^{2n-2}+\cdots +x^2+x+1 \geqq a_n \]
が成り立つことを示せ.
山梨大学 国立 山梨大学 2014年 第1問
次の問いに答えよ.

(1)標高$376 \, \mathrm{m}$の地点から富士山に登りはじめた.一般に,$2$地点の大気圧の比はその$2$地点の高度差の指数関数である.この日の大気圧は,高度が$850 \, \mathrm{m}$上昇するごとに$10 \, \%$ずつ減少していた.登りはじめた地点の大気圧は$990 \, \mathrm{hPa}$であった.この日の富士山の山頂$3776 \, \mathrm{m}$での大気圧は何$\mathrm{hPa}$か.答は小数第$1$位を四捨五入し,整数で答えよ.
(2)ある店において,原価が$200$円,定価が$350$円の商品$\mathrm{A}$の$1$日の売り上げ総数を$N$とする.$\mathrm{A}$の売り値が定価通りのときには$N=35$であり,定価から原価まで売り値を$10$円下げるごとに,$N$は$5$ずつ増えることがわかっている.また,売り値は定価を超えず,原価も下回らないとする.この店での$1$日の$\mathrm{A}$の売り上げ全体の利益を最大にする売り値と,そのときの$N$を求めよ.
(3)$\log_23,\ \log_47,\ \log_828$を小さい順に並べよ.
(4)空間の$3$点$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(0,\ 2,\ 3)$,$\mathrm{C}(-1,\ 0,\ 0)$の定める平面を$\alpha$とする.点$\mathrm{P}(2,\ 3,\ z)$が平面$\alpha$上にあるとき,$z$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2014年 第1問
以下の問に答えよ.

(1)$\displaystyle \left[ \frac{1}{3}x+1 \right]=[2x-1]$を満たす実数$x$の範囲を求めよ.ここで,$[x]$は$x$を超えない最大の整数である.
(2)$\triangle \mathrm{ABC}$と,$\overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}+k \overrightarrow{\mathrm{MC}}=\overrightarrow{\mathrm{0}} (k>0)$を満たす点$\mathrm{M}$が存在する.点$\mathrm{A}$と点$\mathrm{M}$を通る直線と辺$\mathrm{BC}$の交点を$\mathrm{N}$とする.$\displaystyle \frac{3}{4} \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{BN}}$のとき,$k$はいくらか.
(3)初項が正の数である等比数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が,漸化式
\[ a_{n+1}+\left( \frac{1}{2} \right)^{2n+1}=3a_1a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たしているとき,以下の問に答えよ.

(i) $\{a_n\}$の初項と公比を求めよ.
(ii) 無限級数$\displaystyle \sum_{k=1}^\infty a_k$が収束するかどうか調べよ.収束する場合には,その和を求めよ.
群馬大学 国立 群馬大学 2014年 第1問
$a_1,\ a_2,\ a_3,\ b_1,\ b_2,\ b_3$をそれぞれ$1$から$9$までの整数とし,$a_1,\ a_2,\ a_3,\ b_1,\ b_2,\ b_3$の中に同じ数がいくつあってもよいとする.$[a_1a_2a_3]$は$3$桁の整数$a_1 \times 100+a_2 \times 10+a_3 \times 1$を表し,$[b_1b_2b_3]$は$3$桁の整数$b_1 \times 100+b_2 \times 10+b_3 \times 1$を表し,$[b_1b_2b_326]$は$5$桁の整数$b_1 \times 10000+b_2 \times 1000+b_3 \times 100+2 \times 10+6 \times 1$を表すとする.$p,\ q,\ r$を次の条件とする.

$p:[a_1a_2a_3]-1$は$50$で割り切れる.
$q:[b_1b_2b_326]$は$[a_1a_2a_3]$の$26$倍である.
$r:[b_1b_2b_3]$は整数の$2$乗ではない.

このとき,以下の問いに答えよ.

(1)命題「$q \Longrightarrow p$」が真であれば証明し,偽であれば反例をあげよ.
(2)条件$q$を満たす組$(a_1,\ a_2,\ a_3,\ b_1,\ b_2,\ b_3)$は何組あるか.
(3)命題「$q \Longrightarrow r$」が真であれば証明し,偽であれば反例をあげよ.
小樽商科大学 国立 小樽商科大学 2014年 第1問
次の$[ ]$の中を適当に補いなさい.

(1)$1$回の操作で溶液の不純物の$25 \, \%$を除去出来る装置で不純物を除去するとき,この操作を複数回行い,元の不純物の$98 \, \%$以上を除去するには,最低何回以上この操作をする必要があるかを求めると$[ ]$回以上.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(2)中心が$(0,\ 1)$で半径$1$の円がある.下図のように,この円の直径$\mathrm{AB}$と原点$\mathrm{O}(0,\ 0)$と,$x$軸上の点$\mathrm{C}(1,\ 0)$をとる.$\angle \mathrm{AOC}={60}^\circ$とする.点$\mathrm{A}$の$x$座標を$t$(ただし$t>0$)とし,$\triangle \mathrm{OAB}$の面積を$S$とするとき,$t$と$S$を求めると$(t,\ S)=[ ]$.
(図は省略)
(3)$4$桁の正の整数$n$に対し,千の位,百の位,十の位,一の位の数字をそれぞれ$a,\ b,\ c,\ d$とする.$a>b>c>d$を満たす$n$は全部で$p$個あり,$a>c$かつ$b>d$を満たす$n$は全部で$q$個ある.このとき,$p$と$q$を求めると$(p,\ q)=[ ]$.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。