タグ「整数」の検索結果

32ページ目:全1020問中311問~320問を表示)
獨協医科大学 私立 獨協医科大学 2015年 第1問
次の問いに答えなさい.

(1)定数$a$を正の実数とする.関数
\[ f(\theta)=4 \sin 2\theta+6 \cos^2 \theta+4a(\sin \theta+2 \cos \theta)+a^2+1 \]
の$0 \leqq \theta \leqq \pi$における最大値を$M$,最小値を$m$とする.
$t=\sin \theta+2 \cos \theta$とおく.$f(\theta)$を$t$を用いて表すと
\[ f(\theta)=[ア]t^2+4at+a^2-[イ] \]
である.
$M=a^2+[ウ] \sqrt{[エ]}a+[オ]$であり,これを与える$\theta$の値を$\theta_0$とすると,$\displaystyle \tan \theta_0=\frac{[カ]}{[キ]}$である.
また,$M-m=14$となる$a$の値は,$a=\sqrt{[ク]}-\sqrt{[ケ]}$である.
(2)定数$m$を正の整数とする.
$xy$平面上に$2$点$\mathrm{A}(21,\ 0)$,$\mathrm{B}(0,\ m)$がある.点$(1,\ 0)$と直線$\mathrm{AB}$との距離を$d$とすると
\[ d=\frac{[コサ]m}{\sqrt{m^2+[シスセ]}} \]
である.
$d$が有理数となるような$m$の値は全部で$[ソ]$個あり,そのうち$m$の値が最大のものは$m=[タチツ]$である.
また,$d$が整数となるとき,$m=[テト]$,$d=[ナニ]$である.
獨協医科大学 私立 獨協医科大学 2015年 第2問
正$n$角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \cdots \mathrm{P}_n$($n$は$4$以上の整数)を$K$とする.$K$の頂点と各辺の中点の合計$2n$個の点から異なる$3$点を選び,それらを線分で結んでできる図形を$T$とする.(ただし,$K$の$1$つの頂点とそれに隣接する中点の一方を結ぶ線分を$1$辺とする三角形,例えば辺$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{M}_1$として,三角形$\mathrm{P}_1 \mathrm{M}_1 \mathrm{P}_3$なども「$K$と辺を共有する三角形」とする.)

(1)$n=5$とする.
$T$が三角形となる確率は$\displaystyle \frac{[アイ]}{[ウエ]}$である.
$T$が二等辺三角形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
$T$が$K$と辺を共有しない三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)$T$が三角形となる確率は
\[ \frac{[コ]n^2-[サ]n-[シ]}{[ス]([セ]n-[ソ])(n-[タ])} \]
である.
$T$が$K$と辺を共有しない三角形となる確率は
\[ \frac{[チ]n^2-[ツテ]n+[トナ]}{([セ]n-[ソ])(n-[タ])} \]
である.
同志社大学 私立 同志社大学 2015年 第4問
$f(x)=2^{-x} \cos x$とし,曲線$C:y=f(x)$と正整数$n$に対して,次の問いに答えよ.

(1)点$\mathrm{P}(n \pi,\ f(n \pi))$における$C$の接線と$x$軸の交点を$\mathrm{A}$とする.$\mathrm{A}$の座標を求めよ.
(2)点$\mathrm{P}(n \pi,\ f(n \pi))$における$C$の法線と$x$軸の交点を$\mathrm{B}$とする.$\mathrm{B}$の座標を求めよ.
(3)上の$(1)$と$(2)$で求めた点$\mathrm{A}$,$\mathrm{B}$と点$\mathrm{P}$の$3$点でできる$\triangle \mathrm{ABP}$の面積$T_n$を$n$を用いて表せ.
(4)無限級数$\displaystyle \sum_{n=1}^\infty T_n$の和を求めよ.
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)さいころを$n$回投げて,第$1$回から第$n$回までに出た目$n$個の積を$X_n$とする.$X_n$が$3$で割り切れる確率は$[ア]$であり,$X_n$が$2$で割り切れる確率は$[イ]$である.また,$X_n$が$6$で割り切れる確率を$p_n$とすると$\displaystyle \lim_{n \to \infty} \frac{1}{n} \log (1-p_n)=[ウ]$である.
(2)連立不等式
\[ x^2+4y^2 \leqq 4,\quad x+2y \geqq 2 \]
の表す領域を$D$とする.点$(x,\ y)$が$D$内を動くとき,$2x+y$の最小値は$[エ]$である.また,最大値は$[オ]$であり,そのときの$x,\ y$は$x=[カ]$,$y=[キ]$である.
(3)正整数$n=1,\ 2,\ 3,\ \cdots$に対し$\displaystyle \int_0^\pi \sin^2 nx \, dx=[ク]$であり,異なる正整数$m,\ n$に対しては$\displaystyle \int_0^\pi \sin mx \sin nx \, dx=[ケ]$である.したがって,$\displaystyle f(x)=\sum_{n=1}^{15} n \sin nx$とすると$\displaystyle \int_0^\pi \{f(x)\}^2 \, dx=[コ]$である.
大阪歯科大学 私立 大阪歯科大学 2015年 第1問
次の各問の$[ ]$にあてはまる数を入れなさい.

(1)$2015$を素因数分解したとき,最も大きい因子は$[ア]$である.
(2)一般項が$a_{n+1}=2a_n+a_{n-1}$(ただし,$a_0=1$,$a_1=1$)で表される数列の第$5$項は$[イ]$である.
(3)$\cos 2x-3 \cos x-1=0 (0 \leqq x<\pi)$の解は$[ウ]$である.
(4)$\log_2 (x-2)=\log_4 (-2x+a)$が解を持つ最小の整数$a$は$[エ]$である.
星薬科大学 私立 星薬科大学 2015年 第3問
次の問に答えよ.

(1)関数$f(x)=2 \log_2 (2-x)+\log_2 x$は$\displaystyle x=\frac{[$16$]}{[$17$]}$で最大値
\[ [$18$]-[$19$] \log_2 [$20$] \]
をとる.
(2)$\log_2 5=2.32$,$\log_2 11=3.46$,$m$と$n$を正の整数,$0<a<1$とするとき,
\[ \log_2 113=m \left( m-\frac{1}{2} \right)+n+a \]
と表すことができるような$(m,\ n)$の組合せは,$m$の値の小さいほうから順に,$([$21$],\ [$22$])$と$([$23$],\ [$24$])$である.
津田塾大学 私立 津田塾大学 2015年 第3問
$n$を正の偶数とする.次の条件をみたす整数解$(x,\ y)$の個数を求めよ.
\[ \left\{ \begin{array}{l}
x \geqq 0 \\
y \geqq \displaystyle\frac{1}{2}x \phantom{\frac{[ ]}{2}} \\
y \leqq \displaystyle -\frac{1}{2}x+n \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
大阪薬科大学 私立 大阪薬科大学 2015年 第2問
次の問いに答えなさい.

$a,\ b$を正の実数の定数とし,$2$次関数$f(x)=3x^2+ax+b$を考える.$xy$座標平面上の放物線$y=f(x)$を$C$とし,$C$上の点$(1,\ f(1))$における接線を$\ell$とする.また,$\ell$を$y$軸方向に$3$だけ平行移動した直線を$m$とする.
(1)$C$の頂点の$y$座標を$q$とするとき,$q$は,$a$と$b$を用いて表すと$q=[$\mathrm{E]$}$である.
(2)$C$と$m$で囲まれる部分の面積$S$の値は$S=[$\mathrm{F]$}$である.
(3)$\ell$と$x$軸の交点の$x$座標を$r$とする.このとき,$r$は,$a$と$b$を用いて表すと$r=[$\mathrm{G]$}$である.また,大小$2$個のさいころを投げ,大きいさいころの出た目の数を$a$の値,小さいさいころの出た目の数を$b$の値とするとき,$\displaystyle 0 \leqq r \leqq \frac{1}{6}$である確率$P$の値は$P=[$\mathrm{H]$}$である.ただし,大小$2$個のさいころはそれぞれ$1$から$6$までの目が同様に確からしく出るとする.
(4)$C$と$x$軸の共有点が$2$個であるとき,その共有点の$x$座標をそれぞれ$\alpha,\ \beta$とする($\alpha<\beta$).$C$と$x$軸の共有点が$2$個であり,かつ$a,\ b$それぞれが$1 \leqq a \leqq 6$,$1 \leqq b \leqq 6$を満たす整数であるとき,$\alpha^2+\beta^2$のとり得る値の最大値と最小値を$[い]$で求めなさい.
大阪薬科大学 私立 大阪薬科大学 2015年 第3問
次の問いに答えなさい.

(1)「自然数$m$を$4$で割ったときの余りが$r$であるならば,$m(m+1)$を$4$で割ったときの余りは$r(3-r)$と等しい」ことを$r=0,\ 1,\ 2,\ 3$のそれぞれの場合について$[う]$で示しなさい.ただし,自然数$m$が整数$q,\ r$を用いて
\[ m=4q+r \quad (0 \leqq r<4) \]
と表されるとき,$r$を,$m$を$4$で割ったときの余りという.
(2)$n$を自然数とする.数列$\{a_n\}$は,初項$a_1$が$2$,公差が$2$の等差数列であり,数列$\{b_n\}$は次の条件
\[ b_1=1,\quad b_{n+1}-b_n=\frac{a_{n+1}}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められている.

(i) 一般項$a_n,\ b_n$は,$n$を用いて表すとそれぞれ$a_n=[$\mathrm{I]$}$,$b_n=[$\mathrm{J]$}$である.
(ii) $2$つの集合$A,\ B$を
\[ A=\{a_n \;|\; n \text{は}39 \text{以下の自然数} \},\quad B=\{b_n \;|\; n \text{は}12 \text{以下の自然数} \} \]
とする.このとき,$A$と$B$の共通部分$A \cap B$の要素の個数を$s$とすると,$s=[$\mathrm{K]$}$である.
(iii) $t$を自然数の定数とする.$2$つの集合$C,\ D$を
\[ C=\{a_n \;|\; n \text{は} 100 \text{以下の自然数}\},\quad D=\{b_n \;|\; n \text{は} t \text{以下の自然数}\} \]
とする.このとき,$C$と$D$の和集合$C \cup D$の要素の個数が$111$であるならば,$t$の値は$t=[$\mathrm{L]$}$である.
東京女子大学 私立 東京女子大学 2015年 第3問
$xy$平面上の曲線$y=-x^2-(a+2)x-2a+1$を$C$とし,直線$y=-x-1$を$L$とする.このとき,以下の設問に答えよ.

(1)$C$と$L$は,定数$a$の値に関係なく,定点$\mathrm{P}$を通る.$\mathrm{P}$の座標を求めよ.
(2)$C$と$L$が$\mathrm{P}$と異なる点$\mathrm{Q}$でも交わり,かつ,$\mathrm{Q}$の$x$座標が$\mathrm{P}$の$x$座標よりも大きくなるような最大の整数$a$を求めよ.
(3)$(2)$で求めた整数$a$に対し,$C$と$L$で囲まれた図形の面積を求めよ.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。