タグ「整数」の検索結果

29ページ目:全1020問中281問~290問を表示)
自治医科大学 私立 自治医科大学 2015年 第5問
$a,\ b$は整数とする($ab \neq 0$).$\displaystyle \frac{2}{a}+\frac{3}{b}=1$を満たす$(a,\ b)$は,何組あるか.
自治医科大学 私立 自治医科大学 2015年 第18問
$x+y+z=n$($x,\ y,\ z,\ n$は$0$以上の整数)を満たす$(x,\ y,\ z)$の組の数を$f(n)$で与えることとする.$f(n)>185$となるような最小の$n$を$a$とするとき,$\displaystyle \frac{a}{2}$の値を求めよ.
自治医科大学 私立 自治医科大学 2015年 第21問
関数$\displaystyle f(t)=\int_0^{\frac{\pi}{2}} (x-t \cos x)^2 \, dx$は,$t=a$($a$は正の実数)で最小値をとるものとする.$a$を超えない最大の整数の値を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第2問
$2$次方程式$x^2+ax+a+4=0$の$2$つの解が整数となるように定数$a$の値を定めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第6問
$150$個の整数$2^1,\ 2^2,\ \cdots,\ 2^{150}$に対して,次の設問に答えよ.ただし,$\log_{10}2=0.3010$とする.

(1)最下位の数字が$2$になるものは何個あるか.
(2)$2^{150}$は何桁の数か.
(3)最上位の数字が$1$になるものは何個あるか.
中央大学 私立 中央大学 2015年 第1問
正の整数$n$に対し

$3^n$を$5$で割ったときの余りを$a_n$,
$3^n$を$7$で割ったときの余りを$b_n$

とする.このとき,以下の設問に答えよ.

(1)$a_{10}$の値を求めよ.
(2)$b_{20}$の値を求めよ.
(3)$\displaystyle \sum_{k=1}^m (a_k+b_k) \geqq 300$となる最小の正の整数$m$を求めよ.
中央大学 私立 中央大学 2015年 第4問
「当たり」のカードが$2$枚,「外れ」のカードが$8$枚,計$10$枚のカードが入っている箱がある.この箱を使って,次の試行を行う.
\begin{itemize}
試行$\mathrm{A}$:カードを$1$枚引き,「当たり」の有無を確認して,箱に戻す.
試行$\mathrm{B}$:カードを$2$枚引き,「当たり」の有無を確認して,箱に戻す.
\end{itemize}
$k$を正の整数とし,試行$\mathrm{A}$を$k$回繰り返したとき,

「当たり」の有る試行が,少なくとも$1$回ある確率

を$P(k)$とする.一方,試行$\mathrm{B}$を$k$回繰り返した時に,

$2$枚とも「当たり」である試行が,少なくとも$1$回ある確率

を$Q(k)$とする.このとき,以下の設問に答えよ.

(1)$P(3)$および$Q(2)$を求めよ.
(2)下の常用対数表を用いて,$\log_{10}45$の値を小数点以下$3$位まで求めよ.


\begin{tabular}{c|ccccc}
\hline
$n$ & $2$ & $3$ & $7$ & $11$ & $13$ \\ \hline
$\log_{10}n$ & $0.301$ & $0.477$ & $0.845$ & $1.041$ & $1.114$ \\ \hline
\end{tabular}


(3)$P(10)$と$Q(100)$はどちらが大きいか.根拠を述べて解答せよ.なお,前問の常用対数表を利用してよい.
上智大学 私立 上智大学 2015年 第2問
次の問いに答えよ.

(1)不定方程式$41x+355y=1$について,$x$が$0<x<100$を満たす整数解は,$x=[ス]$,$y=[セ]$である.
(2)$25 \, \mathrm{g}$までの普通郵便と,簡易書留をそれぞれ何通かずつ出したところ,料金の合計はちょうど$5000$円となった.なお,$1$通あたりの郵便料金は,普通郵便が$82$円,簡易書留が$710$円である.このとき,普通郵便は$[ソ]$通,簡易書留は$[タ]$通である.
(3)$82$円および$205$円の$2$種類の切手を組み合わせて支払える$6100$円以上$6110$円未満の金額の一の位の数は,$[チ]$であり,そのような組合せは$[ツ]$通りある.
この組合せのうち,$2$種類の切手の合計枚数が最小になるのは$82$円切手が$[テ]$枚,$205$円切手が$[ト]$枚のときである.また,$2$種類の切手の枚数の差が最小になるのは$82$円切手が$[ナ]$枚,$205$円切手が$[ニ]$枚のときである.
上智大学 私立 上智大学 2015年 第3問
次の問いに答えよ.

(1)$\displaystyle x=\frac{3+\sqrt{5}}{2}$とする.
\[ x^2+[ア]x+[イ]=0 \]
である.また,$y=x^2$とするとき,
\[ y^2+[ウ]y+[エ]=0 \]
である.$x^3=ax+b$となる整数$a,\ b$は
\[ a=[オ],\quad b=[カ] \]
である.
(2)$\theta$を実数とするとき,

$\cos 3\theta=[キ] \cos^3 \theta+[ク] \cos \theta,$
$\cos 5\theta=[ケ] \cos^5 \theta+[コ] \cos^3 \theta+[サ] \cos \theta$

である.
(3)$a>1$とする.数列

$a,\ 1 \quad \biggl| \quad a^2,\ a,\ 1 \quad \biggl| \quad a^3,\ a^2,\ a,\ 1 \quad \biggl| \quad \cdots$
第$1$群 \qquad 第$2$群 \qquad\qquad 第$3$群

において,例えば,第$3$群第$1$項は$a^3$であり,これは最初から数えて第$6$項である.$a^{12}$が初めて現れるのは最初から数えて第$[シ]$項である.また最初から数えて第$645$項は第$[ス]$群$[セ]$項である.
(4)次の$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$のように,$2$つの試行を連続して行った結果それぞれ事象$A$と事象$B$が起こった.$2$つの試行が独立なものの組み合わせとして最もふさわしいものを一つ選べ.

\mon[$\mathrm{a.}$] 赤い玉が$4$個,白い玉が$4$個入った袋がある.

$A:$玉を$1$個取り出したところ白だった.
$B:$最初の試行で取り出した玉を戻した後,$1$個取り出したところ白だった.

\mon[$\mathrm{b.}$] $30$人のクラスがある.

$A:$無作為に選んだ$\mathrm{X}$さんの誕生日が$1$月$1$日である.
$B:$その次に無作為に選んだ$\mathrm{Y}$さんの誕生日が$1$月$1$日である.

\mon[$\mathrm{c.}$] $5$つの扉があり,それぞれの後ろに猫が一匹いる.猫は黒猫が$3$匹,白猫が$2$匹であり,その場から動かないものとする.

$A:1$つ目の扉を開けたところ,黒猫がいた.
$B:1$つ目の扉を閉じた後,別の扉を開けたところ,白猫がいた.


\begin{screen}
選択肢:

\begin{tabular}{lll}
$1.$ \ $\mathrm{a}$ & $2.$ \ $\mathrm{b}$ & $3.$ \ $\mathrm{c}$ \\
$4.$ \ $\mathrm{ab}$ & $5.$ \ $\mathrm{ac}$ & $6.$ \ $\mathrm{bc}$ \\
$7.$ \ $\mathrm{abc}$ \phantom{AAAAA} & $8.$ \ なし \phantom{AAAAA} & \phantom{AAAAA} \\
\end{tabular}

\end{screen}
東京理科大学 私立 東京理科大学 2015年 第2問
各自然数$n$に対し,$X_n,\ Y_n,\ V_n,\ W_n$を
\[ X_n+Y_n \sqrt{5}=(2+\sqrt{5})^{2n-1},\quad V_n-W_n \sqrt{5}=(2-\sqrt{5})^{2n-1} \]
が成り立つような整数とする.次の問いに答えよ.$\sqrt{5}$が無理数であることを証明なしで使ってもよい.

(1)$X_2,\ Y_2,\ V_2,\ W_2$の値を求めよ.
(2)$X_{n+1},\ Y_{n+1}$をそれぞれ$X_n$と$Y_n$の式で表せ.
(3)$V_{n+1},\ W_{n+1}$をそれぞれ$V_n$と$W_n$の式で表せ.
(4)$X_n^2-5Y_n^2$を計算せよ.
(5)$\displaystyle \lim_{n \to \infty} \frac{X_n}{Y_n}$を計算せよ.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。