タグ「整数」の検索結果

23ページ目:全1020問中221問~230問を表示)
鳥取大学 国立 鳥取大学 2015年 第4問
次の問いに答えよ.

(1)$5!+4!+3!$の値を求めよ.
(2)$a \geqq 4$のとき,$a!+2$は$2$の累乗になり得ないことを示せ.
(3)$a \geqq 6$のとき,$\displaystyle \frac{a!}{2}+4$は$2$の累乗になり得ないことを示せ.
(4)$a \geqq b \geqq c$を満たす正の整数$a,\ b,\ c$について,
\[ S=a!+b!+c! \]
とする.$S$が$2$の累乗になる整数の組$(a,\ b,\ c)$をすべて求めよ.
千葉大学 国立 千葉大学 2015年 第6問
$b$と$c$を$b^2+4c>0$を満たす実数として,$x$に関する$2$次方程式$x^2-bx-c=0$の相異なる解を$\alpha,\ \beta$とする.数列$\{a_n\}$を
\[ a_n=\alpha^{n-1}+\beta^{n-1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.このとき,つぎの問いに答えよ.

(1)数列$\{a_n\}$は漸化式
\[ a_{n+2}=ba_{n+1}+ca_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすことを示せ.
(2)数列$\{a_n\}$の項$a_n$がすべて整数であるための必要十分条件は,$b,\ c$がともに整数であることである.これを証明せよ.
九州工業大学 国立 九州工業大学 2015年 第2問
初項$1$,公差$3$の等差数列$\{a_n\}$と,一般項が$\displaystyle b_n=\left[ \frac{2n+2}{3} \right]$で与えられる数列$\{b_n\}$がある.ここで,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.たとえば,$\displaystyle b_1=\left[ \frac{4}{3} \right]=1$,$b_2=[2]=2$,$\displaystyle b_3=\left[ \frac{8}{3} \right]=2$である.数列$\{a_n\}$を次のように,$b_1$個,$b_2$個,$b_3$個,$\cdots$の群に分け,第$k$群には$b_k$個の数が入るようにする.

$\big| \quad a_1 \quad \big| \quad a_2,\ a_3 \quad \big| \quad a_4,\ a_5 \quad \big| \quad a_6,\ \cdots$
\ 第$1$群 \quad 第$2$群 \qquad\ 第$3$群 \qquad $\cdots$

第$k$群の最初の数を$c_k$とする.次に答えよ.

(1)自然数$m$に対して,$b_{3m-2}$,$b_{3m-1}$,$b_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{b_n\}$の初項から第$3m$項までの和$S_{3m}$を求めよ.
(2)自然数$m$に対して,$c_{3m-2}$,$c_{3m-1}$,$c_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{c_k\}$の初項から第$3m$項までの和$T_{3m}$を求めよ.
(3)$1000$は第何群の何番目の数か.
(4)$x \geqq 1$のとき$\displaystyle \sqrt{x^2+1}<x+\frac{1}{2}$であることを用いて,次の不等式が成り立つことを示せ.ただし,$m$は自然数とする.
\[ \sum_{k=1}^{3m} (\sqrt{c_k}-k)<\frac{m}{2} \]
千葉大学 国立 千葉大学 2015年 第1問
$b$と$c$を$b^2+4c>0$を満たす実数として,$x$に関する$2$次方程式$x^2-bx-c=0$の相異なる解を$\alpha,\ \beta$とする.数列$\{a_n\}$を
\[ a_n=\alpha^{n-1}+\beta^{n-1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.このとき,つぎの問いに答えよ.

(1)数列$\{a_n\}$は漸化式
\[ a_{n+2}=ba_{n+1}+ca_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすことを示せ.
(2)数列$\{a_n\}$の項$a_n$がすべて整数であるための必要十分条件は,$b,\ c$がともに整数であることである.これを証明せよ.
千葉大学 国立 千葉大学 2015年 第1問
$b$と$c$を$b^2+4c>0$を満たす実数として,$x$に関する$2$次方程式$x^2-bx-c=0$の相異なる解を$\alpha,\ \beta$とする.数列$\{a_n\}$を
\[ a_n=\alpha^{n-1}+\beta^{n-1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.このとき,つぎの問いに答えよ.

(1)数列$\{a_n\}$は漸化式
\[ a_{n+2}=ba_{n+1}+ca_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすことを示せ.
(2)数列$\{a_n\}$の項$a_n$がすべて整数であるための必要十分条件は,$b,\ c$がともに整数であることである.これを証明せよ.
千葉大学 国立 千葉大学 2015年 第2問
$b$と$c$を$b^2+4c>0$を満たす実数として,$x$に関する$2$次方程式$x^2-bx-c=0$の相異なる解を$\alpha,\ \beta$とする.数列$\{a_n\}$を
\[ a_n=\alpha^{n-1}+\beta^{n-1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.このとき,つぎの問いに答えよ.

(1)数列$\{a_n\}$は漸化式
\[ a_{n+2}=ba_{n+1}+ca_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすことを示せ.
(2)数列$\{a_n\}$の項$a_n$がすべて整数であるための必要十分条件は,$b,\ c$がともに整数であることである.これを証明せよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第2問
スイッチを押すと,$0$から$n$までの整数が$1$つ表示される機械がある.表示される数字を$X$とすると,$X=k$となる確率$P(X=k)=C \alpha^k (k=0,\ 1,\ 2,\ \cdots,\ n)$である.ただし,$C$は定数,$0<\alpha<1$である.

(1)$P(X=k)$を$\alpha$と$k$で表せ($k=0,\ 1,\ 2,\ \cdots,\ n$).
(2)$P(X<k)>1-\alpha^k$であることを示せ($k=1,\ 2,\ 3,\ \cdots,\ n+1$).
(3)確率$p$で$1$点もらえ,確率$1-p$で得点がもらえない試行を考える($0<p<1$).この試行を独立に$m$回行ったとき,$l$点($0 \leqq l \leqq m$)もらえる確率を$Q_{m,l}(p)$と表す.このとき,$m,\ l$を一定とし,$p$を変数とみなして以下の問に答えよ.

(i) $y=\log Q_{m,l}(p)$はどのような変化をするか.$p$を横軸,$y$を縦軸とする$y$のグラフの概形を描け.ただし,$\log$は自然対数である.
(ii) $Q_{m,l}(p)$を最大にする$p$を求めよ.

(4)$\displaystyle \alpha=\frac{1}{2}$とする.このとき,$Q_{2m,m}(P(X<k))$を最大にする$k (k=1,\ 2,\ 3,\ \cdots,\ n)$を求めよ.
小樽商科大学 国立 小樽商科大学 2015年 第1問
次の$[ ]$の中を適当に補え.

(1)$n^2-92n+2015 \leqq 0$を満たす整数$n$は全部で$[$(\mathrm{a])$}$個である.
(2)方程式$\log_x (x^3+2)=\log_x x(2x+1)$を解くと$x=[$(\mathrm{b])$}$である.
(3)下図の直角三角形$\mathrm{ACD}$において,$\angle \mathrm{BCD}={90}^\circ$,$\angle \mathrm{DAC}=\alpha$,$\angle \mathrm{DBC}=\beta$,$\mathrm{AB}=x$,$\mathrm{CD}=h$とするとき,$h$を$x,\ \alpha,\ \beta$で表すと$h=[$(\mathrm{c])$}$である.
(図は省略)
小樽商科大学 国立 小樽商科大学 2015年 第3問
次の$[ ]$の中を適当に補え.

(1)整数$m \geqq 2015$に対し,
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{{(2m)}^2-1}=[ア] \]
(2)下図のような道に沿って$\mathrm{A}$地点から$\mathrm{B}$地点まで進むとき,最短経路は何通りあるかを求めると$[イ]$通り.
(図は省略)
(3)中心が$\mathrm{A}(1,\ 0)$にある半径$r (0<r<1)$の円に原点$\mathrm{O}$から$2$本の接線を引く.それぞれの接点と中心$\mathrm{A}$と原点$\mathrm{O}$を頂点とする四角形の面積の最大値$M$とそのときの$r$の値を求めると$(M,\ r)=[ウ]$.
富山大学 国立 富山大学 2015年 第2問
数列$\{a_n\}$を
\[ \left\{ \begin{array}{l}
a_1=2 \sqrt{2}, \\
a_n>0,\quad {a_1}^{\frac{1}{n}} {a_2}^{\frac{1}{n}} \ \cdots \ {a_{n-1}}^{\frac{1}{n}} {a_n}^{\frac{2}{n}}=8 \quad (n \geqq 2)
\end{array} \right. \]
で定めるとき,次の問いに答えよ.

(1)$b_n=\log_2 a_n$とおくとき,数列$\{b_n\}$の一般項を求めよ.
(2)$c_n=a_1 a_2 \cdots a_n$とおくとき,数列$\{c_n\}$の一般項を求めよ.
(3)${10}^{k} \leqq c_{11}<{10}^{k+1}$となる整数$k$を求めよ.ただし,$\log_{10}2=0.3010$とする.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。