タグ「数学的帰納法」の検索結果

8ページ目:全131問中71問~80問を表示)
山形大学 国立 山形大学 2013年 第4問
自然数$n$に対し,座標平面上の点$(n,\ 1)$を$\mathrm{P}_n$とする.また,$r$を正の実数とする.このとき,次の問に答えよ.

(1)$1$次変換$f$は,すべての$n$に対して$f(\mathrm{P}_n)=\mathrm{P}_{n+1}$を満たすとする.$f$を表す行列$A$を求めよ.
(2)$1$次変換$g$は,点$(1,\ 1)$を点$(-2r,\ 1)$に,点$(-2r,\ 1)$を点$(2r^2-r,\ 1)$に移すとする.$g$を表す行列$B$を求めよ.
(3)$C=ABA^{-1}$とする.行列$C^n$を推定し,それが正しいことを数学的帰納法によって示せ.
(4)行列$C^n$で表される$1$次変換による点$(1,\ r)$の像の$x$座標を$x_n$とする.$r<1$のとき,$\displaystyle \lim_{n \to \infty}x_n$を求めよ.
九州工業大学 国立 九州工業大学 2013年 第3問
行列$A=\left( \begin{array}{cc}
3 & 4 \\
1 & 6
\end{array} \right)$について,以下の問いに答えよ.

(1)連立$1$次方程式$\left\{ \begin{array}{l}
3x+4y=kx \\
x+6y=ky
\end{array} \right.$が$x=y=0$以外の解をもつような実数$k$の値を$2$つ求めよ.
(2)(1)で求めた$k$の値を$a,\ b \ (a<b)$とし,$B=\left( \begin{array}{cc}
a & 0 \\
0 & b
\end{array} \right)$とする.実数$s,\ t$に対し,行列$P=\left( \begin{array}{cc}
s & t \\
1 & 1
\end{array} \right)$が$AP=PB$を満たすとき,実数$s,\ t$の値を求めよ.
(3)(2)で定めた行列$B$について,$B^n$(ただし,$n$は自然数)を推測し,その推測が正しいことを数学的帰納法で証明せよ.
(4)$A^n$を求めよ.ただし,$n$は自然数とする.
長崎大学 国立 長崎大学 2013年 第2問
次の問いに答えよ.

(1)$\displaystyle a_1=\frac{3}{2},\ a_{n+1}+2a_{n+1}a_n-3a_n=0 \ (n \geqq 1)$で与えられる数列$\{a_n\}$について,$a_2,\ a_3,\ a_4,\ a_5$の値を求めよ.また,一般項$a_n$を推測し,その推測の結果を数学的帰納法で証明せよ.
(2)$\displaystyle \frac{7}{12}\pi=\frac{\pi}{3}+\frac{\pi}{4}$であることを利用して$\displaystyle \sin \frac{7}{12}\pi$を求め,$1 \leqq x \leqq 4$のとき,次の方程式を解け.
\[ \sin x=\frac{\sqrt{6}+\sqrt{2}}{4} \]
(3)$\displaystyle 0 \leqq x<\frac{\pi}{2}$とする.このとき,$X=\log_2 \cos x$の範囲を求め,次の不等式を解け.
\[ 2(\log_2 \cos x)^2+(4-\log_2 3)\log_2 \cos x+2-\log_23 \leqq 0 \]
{\bf 注意:} $\log_2 \cos x$は$\log_2(\cos x)$を表す.
長崎大学 国立 長崎大学 2013年 第3問
$n$を$2$以上の整数とする.$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$が与えられたとき,
\[ P_n=(a_1+a_2+\cdots +a_n)^2,\quad Q_n={a_1}^2+{a_2}^2+\cdots +{a_n}^2 \]
とおく.次に,$1 \leqq i<j \leqq n$を満たすすべての番号$i,\ j$に対する$a_ia_j$の和を$R_n$とする.たとえば,$R_2=a_1a_2$,$R_3=a_1a_2+a_1a_3+a_2a_3$である.同様に,$1 \leqq i<j \leqq n$を満たすすべての番号$i,\ j$に対する$(a_i-a_j)^2$の和を$S_n$とする.たとえば,$S_2=(a_1-a_2)^2$,$S_3=(a_1-a_2)^2+(a_1-a_3)^2+(a_2-a_3)^2$である.次の問いに答えよ.

(1)$P_4$を$Q_4$と$R_4$を使って表せ.
(2)すべての$n \geqq 2$に対して$S_n=(n-1)Q_n-2R_n$と表されることを,数学的帰納法で証明せよ.
(3)$Q_4$を$P_4$と$S_4$を使って表せ.
(4)$a_1+a_2+a_3+a_4=1$のとき,$Q_4$の最小値と,そのときの$a_1,\ a_2,\ a_3,\ a_4$の値をそれぞれ求めよ.
鹿児島大学 国立 鹿児島大学 2013年 第3問
次の各問いに答えよ.

(1)三角形$\mathrm{ABC}$の垂心を$\mathrm{H}$とする.次の等式が成り立つことを示せ.
\[ \overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HB}}=\overrightarrow{\mathrm{HB}} \cdot \overrightarrow{\mathrm{HC}}=\overrightarrow{\mathrm{HC}} \cdot \overrightarrow{\mathrm{HA}} \]
ただし,三角形の各頂点から向かい合う辺またはその延長に下ろした$3$本の垂線は$1$点で交わる.この点を三角形の垂心という.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) 自然数$n$に対して自然数$a_n$を次のように定義する.
\[ a_n=(2n-1) \cdot (2n-3) \cdot \cdots \cdot 3 \cdot 1 \]
このとき,すべての自然数$k$に対して$(2k)!=2^k k! a_k$が成り立つ.このことを証明せよ.
(ii) すべての自然数$n$に対して,$2^n!$は$2^{(2^n-1)}$で割り切れる.このことを数学的帰納法で証明せよ.
鹿児島大学 国立 鹿児島大学 2013年 第2問
次の各問いに答えよ.

(1)三角形$\mathrm{ABC}$の垂心を$\mathrm{H}$とする.次の等式が成り立つことを示せ.
\[ \overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HB}}=\overrightarrow{\mathrm{HB}} \cdot \overrightarrow{\mathrm{HC}}=\overrightarrow{\mathrm{HC}} \cdot \overrightarrow{\mathrm{HA}} \]
ただし,三角形の各頂点から向かい合う辺またはその延長に下ろした$3$本の垂線は$1$点で交わる.この点を三角形の垂心という.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) 自然数$n$に対して自然数$a_n$を次のように定義する.
\[ a_n=(2n-1) \cdot (2n-3) \cdot \cdots \cdot 3 \cdot 1 \]
このとき,すべての自然数$k$に対して$(2k)!=2^k k! a_k$が成り立つ.このことを証明せよ.
(ii) すべての自然数$n$に対して,$2^n!$は$2^{(2^n-1)}$で割り切れる.このことを数学的帰納法で証明せよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2013年 第5問
数列$\{a_n\}$は,$a_1=2$,$a_{n+1}=2 {a_n}^2-3a_n+5 (n=1,\ 2,\ 3,\ \cdots)$を満たすとする.このとき,どのような自然数$n$に対しても,$a_n-2$は$5$で割り切れることを,数学的帰納法を使って証明せよ.
会津大学 公立 会津大学 2013年 第6問
$n$を自然数とするとき,次の等式が成り立つことを数学的帰納法を用いて証明せよ.
\[ 1^3+2^3+3^3+\cdots +n^3=\frac{n^2(n+1)^2}{4} \]
横浜市立大学 公立 横浜市立大学 2013年 第2問
$a$を正の定数とする.$n$を$0$以上の整数とし,多項式$P_n(x)$を$n$階微分を用いて
\[ P_n(x)=\frac{d^n}{dx^n}(x^2-a^2)^n \quad (n \geqq 1),\quad P_0(x)=1 \]
とおく.以下の問いに答えよ.

(1)$n=2$および$n=3$に対して
\[ P_2(-a),\quad P_3(-a) \]
を求めよ.
(2)$u=u(x)$,$v=v(x)$を何回でも微分可能な関数とする.そのとき,{\bf ライプニッツの公式}
\[ (uv)^{(n)}=\comb{n}{0}u^{(n)}v+\comb{n}{1}u^{(n-1)}v^\prime+\cdots +\comb{n}{k}u^{(n-k)}v^{(k)}+\cdots +\comb{n}{n-1}u^\prime v^{(n-1)}+\comb{n}{n}uv^{(n)} \]
を数学的帰納法を用いて証明せよ(ただし,$n \geqq 1$).ここで,$w^{(k)}$は$w=w(x)$の第$k$次導関数を表し,また$w^{(0)}=w$とする.
(3)一般の$n$に対して
\[ P_n(-a),\quad P_n(a) \]
を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2012年 第1問
数列$\{a_n\},\ \{b_n\}$を次のように定義する.
\[ \left\{
\begin{array}{l}
a_1=5, b_1=3, \\
\left( \begin{array}{c}
a_{n+1} \\
b_{n+1}
\end{array} \right)=\left( \begin{array}{cc}
5 & 3 \\
3 & 5
\end{array} \right) \left( \begin{array}{c}
a_{n} \\
b_{n}
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots)
\end{array}
\right. \]
また,自然数$n$について$c_n=a_n^2-b_n^2$とおく.このとき以下の各問いに答えよ.

(1)$c_n$を$n$を用いて表せ.
(2)$k$を自然数とするとき,自然数$\ell$について
\[ a_{k+\ell}=a_ka_\ell + b_kb_\ell, b_{k+\ell}=b_ka_\ell+a_kb_\ell \]
が成立することを,$\ell$に関する数学的帰納法によって示せ.
(3)$n > \ell$となる自然数$n,\ \ell$について
\[ b_{n+\ell}-c_\ell b_{n-\ell}=2a_nb_\ell \]
が成立することを示せ.
(4)$2$以上の自然数$n$について
\[ a_{2n}+\sum_{m=1}^{n-1}c_{n-m}a_{2m}=\frac{b_{2n+1}}{2b_1}-\frac{c_n}{2} \]
が成立することを示せ.
スポンサーリンク

「数学的帰納法」とは・・・

 まだこのタグの説明は執筆されていません。