タグ「数学的帰納法」の検索結果

13ページ目:全131問中121問~130問を表示)
三重大学 国立 三重大学 2010年 第4問
$X$を2次の正方行列として以下の問いに答えよ.

(1)$p,\ q$を実数とし$q \neq 0$とする.$\biggl( \begin{array}{cc}
p & q \\
0 & p
\end{array} \biggr)X=X \biggl( \begin{array}{cc}
p & q \\
0 & p
\end{array} \biggr)$ならば,$X$は$X=\biggl( \begin{array}{cc}
a & b \\
0 & a
\end{array} \biggr)$の形に表せることを示せ.
(2)$X=\biggl( \begin{array}{cc}
a & b \\
0 & a
\end{array} \biggr)$のとき,自然数$n$に対し$X^n=\biggl( \begin{array}{cc}
a^n & na^{n-1}b \\
0 & a^n
\end{array} \biggr)$となることを数学的帰納法により示せ.ただし$a^0=1$とする.
(3)$m,\ n$を自然数とする.$X$の各成分は0以上の整数で,さらに$X^{n+1}-X^n=\biggl( \begin{array}{cc}
2^{m+1} & 2^{50} \\
0 & 2^{m+1}
\end{array} \biggr)$を満たすものとする.このような行列$X$が存在するような組$(m,\ n)$をすべて求めよ.
宮崎大学 国立 宮崎大学 2010年 第4問
定積分
\[ I_n=\int_1^{\sqrt{e}} (\log x)^n \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
について,次の各問に答えよ.

(1)$I_1$の値を求めよ.
(2)等式
\[ I_{n+1}=\sqrt{e} \left( \frac{1}{2} \right)^{n+1}-(n+1)I_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.
(3)すべての自然数$n$について,等式
\[ I_n=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^n (-1)^{n-m}\frac{n!}{m!}\left( \frac{1}{2} \right)^m \]
が成り立つことを,数学的帰納法を用いて証明せよ.ただし,$0!=1$とする.
宮崎大学 国立 宮崎大学 2010年 第5問
定積分
\[ I_n=\int_1^{\sqrt{e}} (\log x)^n \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
について,次の各問に答えよ.

(1)$I_1$の値を求めよ.
(2)等式
\[ I_{n+1}=\sqrt{e} \left( \frac{1}{2} \right)^{n+1}-(n+1)I_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.
(3)すべての自然数$n$について,等式
\[ I_n=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^n (-1)^{n-m}\frac{n!}{m!}\left( \frac{1}{2} \right)^m \]
が成り立つことを,数学的帰納法を用いて証明せよ.ただし,$0!=1$とする.
愛媛大学 国立 愛媛大学 2010年 第6問
2つの数列$\{a_n\},\ \{b_n\}$は,すべての自然数$n$について
\[ a_{n+1}=\frac{a_n}{1-b_n^{\ 2}},\quad b_{n+1}=a_{n+1}b_n \]
をみたしているとする.

(1)初項が$\displaystyle a_1=b_1=\frac{1}{2}$であるとする.

\mon[(i)] $a_2,\ b_2,\ a_3,\ b_3$を求めよ.
\mon[(ii)] $a_n,\ b_n$を表す$n$の式を推定し,それらの推定が正しいことを数学的帰納法によって証明せよ.

(2)初項が$\displaystyle a_1=\frac{1}{2010},\ b_1=\frac{2009}{2010}$であるとする.

\mon[(i)] $a_{n+1}+b_{n+1}$を$a_n,\ b_n$で表せ.
\mon[(ii)] $a_n+b_n$を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第5問
$n$を自然数とし,行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の$n$個の積を
\[ A^n=\left( \begin{array}{cc}
a_n & b_n \\
c_n & d_n
\end{array} \right) \]
とする.$ad-bc=3$のとき,次の問いに答えよ.ただし,$a_1=a,\ b_1=b,\ c_1=c,\ d_1=d$である.

(1)$a_nd_n-b_nc_n=3^n$を数学的帰納法によって証明せよ.
(2)$a+d=1$のとき,$a_3+d_3$を求めよ.
(3)$a+d=0$のとき,$a_n+d_n$を求めよ.
室蘭工業大学 国立 室蘭工業大学 2010年 第3問
数列$\{a_n\}$は
\[ a_1=\frac{1}{3},\quad (1-a_{n+1})(1+2a_n)=1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.

(1)すべての正の整数$n$に対して$\displaystyle a_n \geqq \frac{1}{3}$であることを,数学的帰納法によって証明せよ.
(2)$\displaystyle b_n=\frac{1}{a_n}$とおくとき,$b_{n+1}$を$b_n$を用いて表せ.
(3)数列$\{a_n\}$の一般項を求めよ.
九州工業大学 国立 九州工業大学 2010年 第4問
右図のように平面上に正六角形$\mathrm{ABCDEF}$がある.時刻$n$ \\
$(n=1,\ 2,\ 3,\ \cdots)$において動点$\mathrm{P}$は正六角形の$6$つの頂点 \\
のいずれかにあり,時刻$1$では頂点$\mathrm{A}$にあるものとする. \\
時刻$n+1$には,時刻$n$のときにあった頂点の隣り合う$2$つの \\
頂点のいずれかに移動する.どちらの頂点に移動するかは \\
同様に確からしいものとする.時刻$n$において,動点$\mathrm{P}$が頂点 \\
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$にある確率をそれぞれ \\
$a_n,\ b_n,\ c_n,\ d_n,\ e_n,\ f_n$とする.以下の問いに答えよ.
\img{678_3150_2010_1}{60}


(1)$a_2,\ b_2,\ c_2,\ d_2,\ e_2,\ f_2$を求めよ.
(2)$a_3,\ b_3,\ c_3,\ d_3,\ e_3,\ f_3$を求めよ.
(3)$n$が偶数のとき,$b_n+d_n+f_n$を求めよ.
(4)すべての時刻$n$に対して,$b_n=f_n$および$c_n=e_n$が同時に成立することを数学的帰納法を用いて示せ.
(5)$m$を$1$以上の整数とするとき,$d_{2m}$を$m$を用いて表せ.また,$\displaystyle \lim_{m \to \infty}d_{2m}$を求めよ.
県立広島大学 公立 県立広島大学 2010年 第3問
数列$\{a_n\}$を
\[ a_1=1,\ a_2=1,\ a_{n+2}=7a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.次の問いに答えよ.

(1)$a_{n+3}$を$a_n,\ a_{n+1}$で表せ.
(2)$a_{3n} \ (n=1,\ 2,\ 3,\ \cdots)$が偶数であることを数学的帰納法で証明せよ.
(3)$a_{4n} \ (n=1,\ 2,\ 3,\ \cdots)$が3の倍数となることを示せ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
$xy$平面上に点P$_0$を原点とし,点P$_1$,P$_2$,$\cdots$,P$_n$が$y$軸上の正の部分にこの順に並んでいる.$y=x^2 \ (x>0)$上に点Q$_1$,Q$_2$,$\cdots$,Q$_n$がこの順に並んでおり,$k=1$から$n$に対し,$\angle \text{Q}_k \text{P}_{k-1} \text{P}_k= \angle \text{Q}_k \text{P}_k \text{P}_{k-1} = \theta$が成り立っている.$\displaystyle \frac{1}{\tan \theta}=t$とおくとき,次の問いに答えよ.

(1)点P$_1$,P$_2$,P$_3$の座標を求めよ.
(2)P$_n(0,\ y_n)$,Q$_n(x_n,\ x_n^2)$とするとき,$y_n$を$x_{n+1}$で表せ.
(3)点P$_n$の座標を推測して,その結果を数学的帰納法で証明せよ.
高知工科大学 公立 高知工科大学 2010年 第4問
$r$と$\theta$を$-1<r<1,\ 0 \leqq \theta < 2\pi$を満たす定数とする.行列$A=r \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対して,次の各問に答えよ.

(1)行列$E-A$は逆行列を持つことを証明し,$(E-A)^{-1}$を求めよ.
(2)全ての自然数$n$について
\[ A^n=r^n \left( \begin{array}{rr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array} \right) \]
が成立することを数学的帰納法を用いて証明せよ.
(3)$n$を2以上の自然数とする.$(E+A+\cdots +A^{n-1})(E-A)$を簡単な式にせよ.
(4)次の極限値を求めよ.
\[ ① \quad \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \cos k\theta ② \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \sin k\theta \]
スポンサーリンク

「数学的帰納法」とは・・・

 まだこのタグの説明は執筆されていません。