タグ「数字」の検索結果

26ページ目:全290問中251問~260問を表示)
神奈川大学 私立 神奈川大学 2011年 第1問
次の空欄を適当に補え.

(1)円$x^2+2x+y^2-6y-6=0$の半径は$[ア]$であり,中心の座標は$[イ]$である.

(2)$\displaystyle 2 \log_84+\log_3 \sqrt{15}-\frac{1}{\log_59}$を計算すると$[ウ]$である.

(3)$0 \leqq x<2\pi$とする.方程式$\cos 2x-5 \cos x+3=0$を解くと,$x=[エ],\ [オ]$である.
(4)$0,\ 1,\ 2,\ 3,\ 4$の$5$つの数字から同じ数字を繰り返し使わずに作れる$3$桁の偶数は全部で$[カ]$個ある.
明治大学 私立 明治大学 2011年 第3問
空欄$[オ]$,$[カ]$,$[キ]$に当てはまるものを解答群の中から選び,それ以外の空欄には,当てはまる$0$から$9$までの数字を入れよ.

座標平面上に$3$つの放物線$C_1:y=x^2$,$C_2:y=-x^2-8x-8$,$C_3:y=-x^2+ax+b$がある.$C_1$と$C_3$は$t>0$の範囲にただ$1$つの共有点$(t,\ t^2)$を持ち,直線$\ell$は点$\mathrm{P}$で$C_2$に接し,なおかつ点$\mathrm{Q}$で$C_3$に接しているとする.次の問に答えよ.

(1)$C_1$と$C_2$の共有点は$\displaystyle \left( -[ア],\ [イ] \right)$である.また,$C_1$と$C_3$もただ$1$つの共有点を持つことから$a=[ウ]t$,$b=-[エ]t^2$である.
(2)点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha$,$\beta$とする.$\ell$は点$\mathrm{P}$における$C_2$の接線および点$\mathrm{Q}$における$C_3$の接線に等しい.これら$2$つの接線の傾きおよび$y$軸との交点がともに等しいことから
\[ \beta-\alpha=[オ],\quad \beta^2-\alpha^2=[カ] \]
が成り立つ.したがって,$\beta+\alpha=[キ]$である.これより,直線$\ell$の方程式は
\[ y=\left( t-[ク] \right) x+\frac{t^2+[ケコ]t+[サ]}{[シ]} \]
である.
(3)$C_3$と$x$軸によって囲まれる部分の面積を$S_1$,$C_1$と直線$\ell$によって囲まれる部分の面積を$S_2$とすると,


$\displaystyle S_1=\frac{\sqrt{[ス]}}{[セ]} \cdot [ソ]t^3$

$\displaystyle S_2=\frac{\sqrt{[ス]}}{[セ]} \cdot \left( t+[タ] \right)^3$


である.$S_1-S_2$は$\displaystyle t=\frac{[チ]+[ツ] \sqrt{[テ]}}{[ト]}$のときに最小値をとる.

オ,カ,キの解答群
\[ \begin{array}{lllll}
\nagamarurei t+2 & \nagamaruichi t-2 & \nagamaruni 2t+4 & \nagamarusan t+\sqrt{2} & \nagamarushi t-\sqrt{2} \\
\nagamarugo t^2-2 & \nagamaruroku t^2-4 & \nagamarushichi t^2-8 & \nagamaruhachi 2t^2-4 & \nagamarukyu 2t^2-8
\end{array} \]
(図は省略)
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$(ⅰ)$~$(ⅲ)$のそれぞれの場合について,$3$つの実数$A,\ B,\ C$の大小関係を,下の選択肢から選べ.

(i) $A=\sin 1^\circ$,$B=\tan 1^\circ$,$C=1-\cos 2^\circ$
(ii) $A=\comb{150}{80}$,$B=\comb{150}{81}$,$C=\comb{151}{81}$

(iii) $\displaystyle A=\frac{10}{\pi}$,$B=\sqrt{10}$,$\displaystyle C=\frac{1}{\tan 15^\circ}$


選択肢: \quad $(\mathrm{a}) A>B>C \qquad (\mathrm{b}) A>C>B \qquad (\mathrm{c}) B>A>C$
\qquad\qquad \;\;\; $(\mathrm{d}) B>C>A \qquad (\mathrm{e}) C>A>B \qquad (\mathrm{f}) C>B>A$

(2)$\tan \alpha=-\sqrt{7} (0^\circ<\alpha<180^\circ)$のとき
\[ \cos \alpha=\frac{[ア] \sqrt{[イ]}}{[ウ]} \]
である.
(3)$a,\ b$は自然数で,$\displaystyle \frac{a^2}{b}$の整数部分は$6$桁であり,$\displaystyle \frac{b^2}{a}$は小数第$3$位にはじめて$0$でない数字が現われる$1$より小さい数である.このとき,$a$は$[エ]$桁または$[オ]$桁,$b$は$[カ]$桁である.ただし$[エ]<[オ]$である.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~ソに当てはまる数または式を記入せよ.

(1)$x$が$0<x<1$と$\displaystyle x^2+\frac{1}{x^2}=3$を満たすとき,$x^3$の値は$[ア]$である.
(2)不等式$\displaystyle \log_5 \left( \frac{x+1}{2} \right)+\log_5(x-4)<2$の解は$[イ]<x<[ウ]$である.
(3)$\sqrt{3} \sin \theta-\cos \theta>1 (-\pi<\theta<\pi)$を満たす$\theta$の範囲は,$[エ]<\theta<[オ]$である.
(4)$3$次方程式$x^3+3x^2-24x-a=0$が,異なる$3$つの実数解をもつような定数$a$の値の範囲は,$[カ]<a<[キ]$である.
(5)積分$\displaystyle \int_{-3}^3 |x^2-1| \, dx$の値は$[ク]$である.
(6)$2$次不等式$ax^2-4x+b<0$の解が$-3<x<5$であるとき,定数$a$は$[ケ]$であり,定数$b$は$[コ]$である.
(7)$2$つのベクトル$\overrightarrow{a}=(2,\ -1,\ 1)$と$\overrightarrow{b}=(x-2,\ -x,\ 4)$のなす角が$30^\circ$のとき,$x$の値は$[サ]$である.
(8)点$(x,\ y)$が直線$2x+3y=4$の上を動くとする.$4^x+8^y$が最小値をとるとき,$x,\ y$の値は$x=[シ]$,$y=[ス]$である.
(9)三角形$\mathrm{ABC}$の$\mathrm{A}$における角度は$45^\circ$,$\mathrm{C}$における角度は$75^\circ$,辺$\mathrm{AC}$の長さが$6$であるとき,辺$\mathrm{BC}$の長さは$[セ]$である.
\mon $0,\ 1,\ 2,\ 3$の数字から選んで$4$桁の自然数を作るとき,同じ数字を何回用いてもよいとすると,$2$の倍数でない自然数は$[ソ]$個できる.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\log_{10}x+\log_{10}y-\log_{10}(y+1)=1$を満たす整数$x,\ y$に対して,
\[ x+y=[ア] \text{または} [イ] \]
が成り立つ.ここで$[ア]<[イ]$とする.
(2)$(100.1)^7$の$100$の位の数字は$[ウ]$であり,小数第$4$位の数字は$[エ]$である.
(3)$\triangle \mathrm{ABC}$において$\mathrm{AB}>\mathrm{AC}$,$\mathrm{BC}=8$,$\displaystyle \cos A=\frac{9}{40}$であり,辺$\mathrm{BC}$の中点を$\mathrm{M}$とすると$\mathrm{AM}=5$である.このとき,
\[ \mathrm{AB}^2+\mathrm{AC}^2=[オ],\quad \mathrm{AB} \cdot \mathrm{AC}=[カ] \]
である.したがって
\[ \mathrm{AB}=[キ] \sqrt{[ク]},\quad \mathrm{AC}=[ケ] \sqrt{[コ]} \]
である.
上智大学 私立 上智大学 2011年 第3問
ボタンを押すと,$0$と$1$のどちらか一方の数字を表示する機械がある.ボタンを連続して押すとき,直前に表示された数字と同じ数字が再び表示される確率は$\displaystyle \frac{2}{3}$,違う数字の表示される確率は$\displaystyle \frac{1}{3}$である.ただし,始めにボタンを押すときには,$0$と$1$が表示される確率は等しい.

(1)$4$回連続してボタンを押すとき,$4$回とも同じ数字が表示される確率は$\displaystyle \frac{[ヒ]}{[フ]}$である.また,$4$回目に表示された数字が$1$である確率は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
(2)$4$回連続してボタンを押すときに表示される数字の合計が$1$である確率は$\displaystyle \frac{[マ]}{[ミ]}$である.また,合計が$2$である確率は$\displaystyle \frac{[ム]}{[メ]}$である.
(3)始めに表示された数字が$1$のとき,さらに$4$回連続してボタンを押して表示される$4$つの数字の合計が$2$である確率は$\displaystyle \frac{[モ]}{[ヤ]}$である.
北海道科学大学 私立 北海道科学大学 2011年 第6問
$1$と$2$の数字だけを使って$6$桁の整数をつくると,$[ ]$通りの整数ができる.そのうち,$121212$よりも小さい整数は$[ ]$通りある.
中部大学 私立 中部大学 2011年 第1問
次の$[ ]$にあてはまる数字または符号を記入せよ.

(1)$\displaystyle -2<\log_8 x<\frac{5}{3}$を満たす$x$は$\displaystyle \frac{[ ]}{[ ]}<x<[ ]$である.
(2)$x^3+ax^2+x+b=0$が$1$と$-2$を解にもつとき,もう$1$つの解は$[ ]$である.
(3)$7$個の数字$1,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4$を$1$列に並べる.このとき,偶数番目がすべて奇数になるような並べ方は$[ ]$通りある.
(4)$2$点$(2,\ 0,\ 1)$,$(1,\ 1,\ 2)$を通る直線がある.原点$\mathrm{O}$からこの直線に下ろした垂線の足を$\mathrm{A}$とする.点$\mathrm{A}$の座標は$\displaystyle \left( \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]} \right)$であり,原点から点$\mathrm{A}$までの距離は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.
愛知工業大学 私立 愛知工業大学 2011年 第1問
次の$[ ]$を適当に補え.

(1)連続する$4$つの自然数を小さい順に$a,\ b,\ c,\ d$とする.$\displaystyle \frac{ac}{bd}=\frac{5}{8}$のとき,$a=[ ]$である.
(2)袋の中に$0$と書かれたカードが$1$枚,$1$と書かれたカードが$2$枚,$2$と書かれたカードが$3$枚,合わせて$6$枚のカードが入っている.この袋から$1$枚ずつ$4$枚のカードを取り出し,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.また,$1$枚カードを取り出し,カードを袋に戻すことを$4$回くり返した場合,取り出した順に左からカードの数字を書き並べたとき,$2011$となる確率は$[ ]$である.
(3)数列$\{a_n\}$は関係式$a_1=1$,$\displaystyle 2^{a_{n+1}}=\frac{4^{a_n}}{\sqrt{2}} (n=1,\ 2,\ 3,\ \cdots)$をみたすとする.このとき,$a_3=[ ]$であり,$a_n=[ ]$である.
(4)$\displaystyle \frac{\pi}{2}<\theta<\pi$において,$\tan \theta=-2$のとき,$\cos^2 \theta=[ ]$,$\displaystyle \sin \left( 2\theta+\frac{\pi}{4} \right)=[ ]$である.
(5)$2$次方程式$x^2-kx+9=0$が実数解をもつような実数$k$の範囲は$[ ]$である.このとき,その実数解を$\alpha,\ \beta$とすると,$(\alpha+1)^2+(\beta+1)^2$の最小値は$[ ]$である.
(6)整式$x^3+3x$を$x^2+1$で割った商は$[ ]$であり,余りは$[ ]$である.また,$\displaystyle \int_0^2 \frac{x^3+3x}{x^2+1} \, dx=[ ]$である.
産業医科大学 私立 産業医科大学 2011年 第3問
数列$1,\ 2,\ 1,\ 3,\ 2,\ 1,\ 4,\ 3,\ 2,\ 1,\ 5,\ 4,\ 3,\ 2,\ 1,\ \cdots,\ k,\ k-1,\ \cdots,\ 2,\ 1,\ k+1,\ k,\ \cdots,\ 2,\ 1,\ \cdots$の第$n$項を$a_n$とする.このとき,次の問いに答えなさい.

(1)数字$9$が$16$度目に現れるのは第何項か.
(2)$\displaystyle \sum_{n=1}^{365} a_n$を求めなさい.
スポンサーリンク

「数字」とは・・・

 まだこのタグの説明は執筆されていません。