タグ「数列」の検索結果

6ページ目:全826問中51問~60問を表示)
鹿児島大学 国立 鹿児島大学 2016年 第3問
数列$\{a_n\}$を$a_1=a_2=1$,$a_{n+2}=a_{n+1}+a_n (n=1,\ 2,\ 3,\ \cdots)$によって定める.また$\alpha$を$\displaystyle \alpha=1+\frac{1}{\alpha}$を満たす正の実数とする.次の各問いに答えよ.

(1)数列$\{b_n\}$を$\displaystyle b_n=\frac{a_{n+1}}{a_n}$で定める.$b_{n+1}$を$b_n$を用いて表せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して$b_n \geqq 1$となることを示せ.
(3)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_{n+1|-\alpha} \leqq \frac{1}{\alpha} |b_n-\alpha|$となることを示せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_n-\alpha| \leqq \frac{1}{\alpha^n}$となることを示せ.
九州工業大学 国立 九州工業大学 2016年 第2問
$s>0$,$t>0$とする.正の数からなる$2$つの数列$\{a_n\}$,$\{b_n\}$は初項と第$2$項が$a_1=b_1=s$,$a_2=b_2=t$であり,すべての自然数$n$に対して
\[ a_{n+2}=\frac{a_{n+1}+a_n}{2},\quad b_{n+2}=\sqrt{b_{n+1}b_n} \]
をみたすとする.次に答えよ.

(1)$a_3,\ b_3,\ a_4,\ b_4$を$s,\ t$を用いて表せ.
(2)自然数$n$に対して,$c_n=a_{n+1}-a_n$とおく.数列$\{c_n\}$は等比数列であることを示し,一般項を求めよ.さらに,数列$\{a_n\}$の一般項を求めよ.
(3)自然数$n$に対して,$d_n=\log b_n$とおく.数列$\{d_n\}$の一般項を求めよ.さらに,数列$\{b_n\}$の一般項を$s$の累乗と$t$の累乗を用いて表せ.ただし,対数は自然対数とする.
(4)$\displaystyle \lim_{n \to \infty}a_n$と$\displaystyle \lim_{n \to \infty}b_n$を求めよ.
(5)$t=s$は$\displaystyle \lim_{n \to \infty}a_n=\lim_{n \to \infty}b_n$であるための必要十分条件であることを示せ.
秋田大学 国立 秋田大学 2016年 第1問
次の問いに答えよ.

(1)次の式で定義される数列$\{a_n\}$がある.
\[ a_1=2,\quad a_{n+1}=a_n+4n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
次の項を求めよ.

\mon[$①$] 第$2$項から第$5$項まで
\mon[$②$] 一般項$a_n$

(2)次の値を求めよ.

\mon[$①$] ${(1+x)}^{10}$の展開式における$x^7$の項の係数
\mon[$②$] ${16}^{16}$を$225$で割ったときの余り
秋田大学 国立 秋田大学 2016年 第1問
次の問いに答えよ.

(1)次の式で定義される数列$\{a_n\}$がある.
\[ a_1=2,\quad a_{n+1}=a_n+4n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
次の項を求めよ.

\mon[$①$] 第$2$項から第$5$項まで
\mon[$②$] 一般項$a_n$

(2)次の値を求めよ.

\mon[$①$] ${(1+x)}^{10}$の展開式における$x^7$の項の係数
\mon[$②$] ${16}^{16}$を$225$で割ったときの余り
奈良女子大学 国立 奈良女子大学 2016年 第2問
$a$と$d$を整数とする.数列$\{a_n\}$を初項$a$,公差$d$の等差数列とする.数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする.次の問いに答えよ.

(1)$S_n$を$a,\ d,\ n$を用いて表せ.
(2)$n \leqq 34$のとき$S_n \leqq 0$,$n \geqq 35$のとき$S_n>0$であるとする.次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) $S_n$が最小となる$n$の値を求めよ.
(ii) $S_n$の最小値が$-289$のとき,$a$と$d$の値をそれぞれ求めよ.
福岡教育大学 国立 福岡教育大学 2016年 第2問
数列$\{a_n\}$,$\{b_n\}$の初項から第$n$項までの和をそれぞれ
\[ s_n=a_1+a_2+\cdots +a_n,\quad t_n=b_1+b_2+\cdots +b_n \]
とおいたとき
\[ s_n=\frac{3n^2+n}{2},\quad \log_2 (t_n+1)=2n \quad (n=1,\ 2,\ \cdots) \]
が成り立つ.次の問いに答えよ.

(1)$\{a_n\}$の一般項を求めよ.
(2)$\{b_n\}$の一般項を求めよ.
(3)$\displaystyle \sum_{k=1}^n a_kb_k$を求めよ.
島根大学 国立 島根大学 2016年 第1問
$n$を自然数とする.下図のように,$3$本の平行な道路$\ell_1$,$\ell_2$,$\ell_3$があり,$\ell_1,\ \ell_2$をつなぐ縦の道と,$\ell_2,\ \ell_3$をつなぐ縦の道がそれぞれ$n$本ずつ,交互に配置されているとする.
(図は省略)
次の規則に従い図の$\mathrm{X}$から出発して$\mathrm{P}_n$,$\mathrm{Q}_n$,$\mathrm{R}_n$に到達する経路の個数をそれぞれ$a_n$,$b_n$,$c_n$とする.


\mon[(規則)] $\ell_1$,$\ell_2$,$\ell_3$は一方通行であり,西方向には進むことができない.また,一度通った縦の道を再び通ることもできない.

次の問いに答えよ.

(1)$a_2,\ b_2$を求めよ.
(2)$a_{n+1}$を$a_n,\ b_n$を用いて表せ.
(3)$b_n=c_n$が成り立つことを証明せよ.
(4)$a_1,\ b_1,\ a_2,\ b_2,\ \cdots,\ a_k,\ b_k,\ \cdots$と順に並べてできる数列を$\{f_n\} (n=1,\ 2,\ 3,\ \cdots)$とする.$f_{n+2}$を$f_n$,$f_{n+1}$を用いて表せ.また,それを用いて$a_7$を求めよ.
浜松医科大学 国立 浜松医科大学 2016年 第2問
$r$を$1<r<3$を満たす実数,$k$を$|r-2|<k<1$を満たす実数とする.また,次の関数$f(x)$を考える.
\[ f(x)=rx(1-x) \]
以下の問いに答えよ.

(1)$f(x)=x$を満たす$x$を求めよ.



以下の問題では,$(1)$で求めた$x$のうちで正のものを$x_r$とする.


\mon[$(2)$] 次の条件

$|x-x_r|<a$を満たすすべての$x$について$|f^\prime(x)|<k$

が成り立つような正の実数$a$が存在することを証明せよ.
\mon[$(3)$] $(2)$の$a$に対して,数列$\{x_n\}$を
\[ |x_1-x_r|<a,\quad x_{n+1}=f(x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.

(i) すべての自然数$n$について$|x_n-x_r|<a$であることを証明せよ.
(ii) $\displaystyle \lim_{n \to \infty}x_n=x_r$を証明せよ.
愛媛大学 国立 愛媛大学 2016年 第3問
$2$つの数列$\{a_n\}$と$\{b_n\}$が$a_1=0$,$b_1=1$および
\[ \left\{ \begin{array}{l}
a_{n+1}=a_n-b_n \\
b_{n+1}=a_n+3b_n+1 \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. (n=1,\ 2,\ 3,\ \cdots) \]
によって定められている.

(1)$c_n=a_n+b_n+1$によって定められる数列$\{c_n\}$の一般項を求めよ.
(2)$a_{n+1}$を$a_n$と$n$を用いて表せ.

(3)$\displaystyle d_n=\frac{a_n+1}{2^n}$によって定められる数列$\{d_n\}$の一般項を求めよ.

(4)$\displaystyle \sum_{k=1}^n \frac{a_k}{2^k}$を求めよ.
岩手大学 国立 岩手大学 2016年 第4問
数列$\{a_n\}$が,
\[ a_1=1,\quad \frac{(1-a_{n+1})a_n}{a_{n+1}}=\frac{a_{n+1}}{(1+a_{n+1})a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとき,次の問いに答えよ.ただし,すべての自然数$n$について$a_n>0$とする.


(1)数列$\{b_n\}$が$\displaystyle b_n=\frac{1}{{a_n}^2}$で与えられるとき,$b_2,\ b_3,\ b_4$の値を求めよ.

(2)数列$\{a_n\}$の一般項を求めよ.

(3)不等式$\displaystyle \int_1^{n+1} \frac{1}{\sqrt{x}} \, dx < \sum_{k=1}^n a_k$が成り立つことを示せ.
スポンサーリンク

「数列」とは・・・

 まだこのタグの説明は執筆されていません。